The Program Which Generates This Book

Martin O’Leary






Chapter 1

About this book

This book describes a computer program which, when executed, generates this
book. The program is described in three ways:

First, a source code listing is given, in the Python programming language.
This is the form of the program which was typed by the author, in text form.

Second, an abstract syntax tree is described, which is the computer’s interpre-
tation of the textual source code in terms of the language constructs available in
the Python programming language.

Finally, the program is described in terms of bytecode, the computer’s internal
representation of the source code, a sequence of unambiguous instructions which
can be executed to perform the computation described by the program.

The descriptions given in this book are generated by the program it describes,
in conjunction with a Python interpreter, starting from the source code form.
Both the abstract syntax tree and the bytecode representation are somewhat
unstable. Different versions of the Python interpreter may yield different
abstract syntax trees and different bytecode representations of the same
program. This book was generated using Python 3.6.1 (default, Apr
4 2017, 09:40:21) [GCC 4.2.1 Compatible Apple LLVM 8.1.0

(clang—-802.0.38)].

License

This code is licensed under the MIT License:

Copyright (c) 2017: Martin O’Leary

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the “Soft-
ware”), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be in-
cluded in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY
OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-
NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLD-
ERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIA-
BILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.






Chapter 2

Source code

import ast
import dis
import re
import sys
import types

title = "The Program Which Generates This Book"
author = "Martin O'Leary"
preface = """

This book describes a computer program which, when executed, generates this
book. The program is described in three ways:

First, a source code listing is given, in the Python programming language. This
is the form of the program which was typed by the author, in text form.

Second, an *abstract syntax treex is described, which is the computer's
interpretation of the textual source code in terms of the language constructs
available in the Python programming language.

Finally, the program is described in terms of *bytecodex, the computer's internal
representation of the source code, a sequence of unambiguous instructions which
can be executed to perform the computation described by the program.

The descriptions given in this book are generated by the program it describes, in
conjunction with a Python interpreter, starting from the source code form. Both
the abstract syntax tree and the bytecode representation are somewhat unstable.
Different versions of the Python interpreter may yield different abstract syntax
trees and different bytecode representations of the same program. This book was
generated using “Python {} .

"nn _ format (sys.version)

def title_block () :
return "% {}\n% {}\n".format (title, author)

def describe_op (op, codes):
f = descriptors.get (op.opname, None)
if f:
s = f(op, codes)
else:
s =
if op.is_jump_target:

[}



def

def

def

def

def

CHAPTER 2. SOURCE CODE

s = "\n\n### Offset {}\n\n".format (op.offset) + s
return s

describe_file (filename) :

codetxt = open(filename) .read()

txt = title_block ()

txt += "4 About this book\n\n"

txt += preface

txt += "\n\n## License\n\n"

txt += open ("LICENSE.md") .read()

txt += '\n\n# Source code\n\n'

txt += """ '\n' + codetxt + '\n " \n\n'
txt += '# Abstract syntax tree\n\n'
txt += describe_node (ast.parse (codetxt))
txt += '"\n\n# Bytecode\n\n'

codes = [(filename, compile(codetxt, filename, 'exec', optimize=1))]
while codes:
name, code = codes.pop (0)

txt += '"## {}'.format (name)

for op in dis.get_instructions (code) :
desc = describe_op (op, codes)
if not desc: continue
if op.starts_line:

txt += '"\n\n'

txt += desc + ' !

txt += '\n\n'

return txt

describe_number (num) :
words = [
"ZerO", "One", l'tWO", llthree", "four", l'five", "SiX", "SeVel"l", l‘eight",
"nine", "ten"
]
if 0 <= num <= 10:
return words [num]
elif num >= -10:
return "minus " 4+ words[-num]
return str (num)

as_list (items) :
items = list (items)
if len(items) == 1:
return items|[0]
else:
return ', '.join(items[:-1]) + ", and " + items[-1]

escape_string(s) :

s = re.sub(r' ([_"\x\\#1)"', r'\\\1', s)
s = re.sub(r'\n', r'\\\\n', s)

return s

describe_value (value, codes):

if isinstance (value, types.CodeType) :
# print (dir (value))
name = value.co_name



if name.startswith('<"):
name = value.co_name[l:-1] + ':' + str(value.co_firstlineno)
codes.append ( (name, value))
return "the code object described under {}".format (name)
elif isinstance (value, str):
return "the literal string *'{}'x".format (escape_string(value))
elif isinstance (value, int):
return "the integer constant {}".format (describe_number (value))
elif value is None:
return "the constant None"
elif isinstance(value, tuple):
return "the tuple consisting of " + as_list(
describe_value (x, codes) for x in value)
else:
print ("Uninterpretable constant:", wvalue)
return repr (value)

def describe_node (node) :
f = descriptors.get(node.__class__.__name__, None)
if f:
return f (node)
else:
print (node, node._fields)
return str (node)

descriptors = {}

def descriptor(f):
descriptors[f.__name__] = f
return f

@descriptor
def Module (node) :
return "A module, containing the following code:\n\n" + '\n\n'.join/(
describe_node (n) for n in node.body)

@descriptor
def Import (node) :
return "An import statement for a module named " {} .".format (

node.names [0] .name)

@descriptor
def Assign (node) :
s = "An assignment to {}, of the value of {}.".format (
describe_node (node.targets[0]), describe_node (node.value))
return s

@descriptor
def AugAssign (node) :
s = "A modifying assignment to {}, using {}, of the value of {}.".format (
describe_node (node.target),
describe_node (node.op), describe_node (node.value))
return s



8 CHAPTER 2. SOURCE CODE

@descriptor
def Add (node) :
return "the addition (or concatenation) operator"

@descriptor
def Mult (node) :
return "the multiplication operator"

@descriptor
def BitAnd(node) :
return "the bitwise 'AND' operator"

@descriptor
def Subscript (node):
return "{}, subscripted by {}".format (
describe_node (node.value), describe_node (node.slice))

Q@descriptor
def Index (node) :
return describe_node (node.value)

@descriptor
def Slice (node) :
if node.lower:
return "a slice from {} to {}".format (
describe_node (node.lower), describe_node (node.upper))
else:
return "a slice up to {}".format (describe_node (node.upper))

@descriptor
def For (node) :
s = "A for loop, where {} iterates over {}." \
"The body of the loop is as follows:\n\n".format (
describe_node (node.target), describe_node (node.iter))
for nod in node.body:
s += describe_node (nod) + "\n\n"
s += "The for loop ends here."
return s

@descriptor
def While (node) :
s = "A while loop, testing {}." \
"The body of the loop is as follows:\n\n".format (
describe_node (node.test))
for nod in node.body:
s += describe_node (nod) + "\n\n"
s += "The while loop ends here."
return s

@descriptor



def Continue (node) :
return "A 'continue' statement."

@descriptor
def Name (node) :
return "the name " {} ".format (node.id)

@descriptor
def NameConstant (node) :
return "the constant " {} ".format (node.value)

@descriptor
def List (node) :
if not node.elts:
return "an empty list"
else:
return "a list containing " + as_list(
describe_node (elt) for elt in node.elts)

@descriptor
def Tuple (node):
if not node.elts:
return "an empty tuple"
else:
return "a tuple containing " + as_list(
describe_node (elt) for elt in node.elts)

@descriptor
def Dict (node) :
return "an empty dictionary"

@descriptor
def FunctionDef (node) :
s = "## {node.name}\n\n" \
"A definition of a function named "~ {node.name} ".format (
node=node)
args = node.args
if len(args.args) == 1:
s += ", with argument " {} .".format (args.args[0].arqg)
elif args.args:
s += ", with positional arguments {args}.".format (args=as_list (
['"{} '.format (a.arg) for a in args.argsl]))
if node.decorator_list:
s += " The definition is decorated with the function " {}  .".format (
node.decorator_list[0].1id)
s += " The body of the function is as follows:\n\n"

for nod in node.body:
s += describe_node (nod) + '\n\n'

s += "The function {} ends here.\n\n".format (node.name)
return s

@descriptor



10 CHAPTER 2. SOURCE CODE

def Call (node) :
s = 'a function call, calling the value of {f}'.format (
f=describe_node (node. func))
if len(node.args) ==

s += ', with argument {}'.format (describe_node (node.args[0]))
elif node.args:
s += ', with positional arguments {args}'.format (args=as_list (
describe_node(a) for a in node.args))
else:
s += ' with no positional arguments'
if node.keywords:
if len(node.keywords) == 1:
s += ', and keyword argument'
else:
s += ', and keyword arguments'
for kw in node.keywords:
s += ', assigning {} as " {} '.format (

describe_node (kw.value), kw.arg)
return s

@descriptor
def Return (node) :
return "A return statement, returning the value of {}.".format (

describe_node (node.value))

Q@descriptor
def Str (node) :
return "the literal string x'{}'x".format (escape_string(node.s))

@descriptor
def Attribute (node) :
return "an attribute lookup of “{}  on {}".format (
node.attr, describe_node (node.value))

@descriptor
def Expr (node):
return "A bare expression with value {}.".format (describe_node (node.value))

@descriptor
def BinOp (node) :
return "{}, with left hand side {}, and right hand side {}".format (
describe_node (node.op),
describe_node (node.left), describe_node (node.right))

@descriptor
def If (node):
s = "An "if’ statement, testing {}. " \
"The body of the main branch is as follows:\n\n".format (
describe_node (node.test))
for nod in node.body:
s += describe_node (nod) + "\n\n"
if node.orelse:
s += "The other ('else') branch of the "if’ statement is as follows:\n\
for nod in node.orelse:



11

s += describe_node (nod) + "\n\n"
s += "The "if’' statement ends here.\n\n"
return s

@descriptor
def Num (node) :
return "a numeric constant with value {}".format (node.n)

@descriptor
def Compare (node) :
if len(node.ops) == 1:
return "a comparison (using {}) of {} and {}".format (
describe_node (node.ops[0]),
describe_node (node.left), describe_node (node.comparators[0]))

else:
lefts = [node.left] + node.comparators[:-1]
rights = node.comparators
s = "a compound comparison, comparing "

s += as_list ("{} and {} using {}".format (
describe_node (left), describe_node(right), describe_node (op))
for left, op, right in zip(lefts, node.ops, rights))
return s

@descriptor
def Eqg(node) :
return "the equality operator"

@descriptor
def GtE (node) :
return "the 'greater than or equal to' operator"

@descriptor
def LtE (node) :
return "the 'less than or equal to' operator"

@descriptor
def Gt (node) :
return "the 'greater than' operator"

@descriptor
def Is(node):
return "the identity operator"

@descriptor
def UnaryOp (node) :
return "{} applied to {}".format (
describe_node (node.op), describe_node (node.operand))

@descriptor
def Not (node) :
return "the unary 'not' operator"



12 CHAPTER 2. SOURCE CODE

@descriptor
def USub (node) :
return "the unary negation operator"

@descriptor
def GeneratorExp (node) :
gen = node.generators[0]
return "a generator expression, taking the value of {}, " \
"as {} ranges over {}".format (
describe_node (node.elt),
describe_node (gen.target), describe_node(gen.iter))

@descriptor
def ListComp (node) :
gen = node.generators[0]
return "a list comprehension, taking the value of {}, " \
"as {} ranges over {}".format (
describe_node (node.elt),
describe_node (gen.target), describe_node(gen.iter))

Qdescriptor
def Assert (node) :
return ""

@descriptor
def LOAD_CONST (op, codes):
return "The computer places {} on top of the stack.".format (
describe_value (op.argval, codes))

@descriptor
def LOAD_NAME (op, codes):
return "The computer places the value associated with the name " {}°
"on top of the stack.".format (
op.argval)

@descriptor
def CALL_FUNCTION (op, codes):
if op.argval == 0:
return "The computer takes the top value from the stack " \
"and calls it as a function (with no arguments), " \
"placing the return value on top of the stack."
elif op.argval == 1:
return "The computer takes the top value from the stack, " \
"along with another value which it calls as a function, " \
"using the original value as an argument, " \
"placing the return value on the stack.".format (
op.argval)
else:
return "The computer takes {} values from the stack, " \
"along with another value which it calls as a function, " \
"using the original values as arguments, " \
"placing the return value on the stack.".format (

describe_number (op.argval))



@descriptor
def POP_TOP (op, codes):

13

return "The computer discards the top value from the stack."

@descriptor
def RETURN_VALUE (op, codes):
return "The computer exits the current function, "
"returning the top value on the stack."

@descriptor
def STORE_NAME (op, codes):
return "The computer takes the top value from the
"and stores it under the name " {} .".format (
op.argval)

@descriptor
def BINARY_SUBSCR (op, codes):

\

stack, " \

return "The computer takes the top two values from the stack "

"and retrieves the value of the second item, "
"subscripted by the value of the first item."

@descriptor
def LOAD_ATTR (op, codes):
return "The computer takes the top value from the
"and retrieves its attribute named " {}', " \
"placing it on the stack.".format (
op.argval)

@descriptor
def POP_JUMP_TIF_FALSE (op, codes):
return "The computer takes the top value from the
"and if it is false-like (e.g. False, None or
"Jumps to offset {}.".format (
op.argval)

@descriptor
def POP_JUMP_TIF_TRUE (op, codes):
return "The computer takes the top value from the
"and if it is true-like (e.g. True, non-empty
"Jumps to offset {}.".format (
op.argval)

@descriptor
def IMPORT_NAME (op, codes):

\

stack " \

stack, " \
zero), " \

stack, " \
or non-zero),

return "The computer takes the top two values from the stack "

"and uses them as the 'fromlist' and 'level' of an import
"for the module " {} , which is placed on the stack.".format (

op.argval)

@descriptor
def MAKE_FUNCTION (op, codes):

"

n

\

\



14 CHAPTER 2. SOURCE CODE

txt = "The computer takes the top two values from the stack " \
"and uses them as the qualified name and code of a new function, " \
"which is placed on the stack."
if op.argval & 8:
txt += ' It also takes the next value as a tuple of cells ' \
'for free variables, creating a closure.'
if op.argval & 4:
txt += ' It also takes the next value as a dictionary ' \
'of function annotations.'
if op.argval & 2:
txt += ' It also takes the next value as a dictionary ' \
'of keyword arguments.'
if op.argval & 1:
txt += ' It also takes the next value as a tuple of default arguments.'
return txt

@descriptor
def COMPARE_OP (op, codes):
if op.argval == '==':

return "The computer takes the top two values from the stack " \
"and compares them for equality, " \
"placing the result on top of the stack."
elif op.argval == 'is':
return "The computer takes the top two values from the stack " \
"and compares them for identity, " \
"placing the result on top of the stack."
return "The computer takes the top two values from the stack " \
"and compares them using the operator “{} , " \

"placing the result on top of the stack.".format (
op.argval)

@descriptor
def BUILD_MAP (op, codes):
if op.argval ==
return "The computer places an empty dictionary on top of the stack."
return "The computer takes the top {} values from the stack, " \
"and uses them as key-value pairs in a new dictionary, " \
"which is placed on top of the stack.".format (
describe_number (2 * op.argval))

@descriptor
def EXTENDED_ARG (op, codes):
return ""
@descriptor
def BINARY_ADD (op, codes):
return "The computer takes the top two values from the stack, " \

"adds them together, and places the result on top of the stack."

@descriptor
def BINARY_MULTIPLY (op, codes):
return "The computer takes the top two values from the stack, " \

"multiplies them together, and places the result on top of the stack."



15

@descriptor
def BINARY_AND (op, codes):
return "The computer takes the top two values from the stack, " \

"applies a bitwise ‘AND' operator to them, " \
"and places the result on top of the stack.”

@descriptor
def BUILD_LIST (op, codes):
if op.argval == 0:
return "The computer places a new empty list on top of the stack."
elif op.argval == 1:
return "The computer takes the top value from the stack, " \
"puts it in a list, and places it on top of the stack."
else:
return "The computer takes the top {} values from the stack, " \
"puts them in a list, and places it on top of the stack.".format (
describe_number (op.argval))
@descriptor
def BUILD_SLICE (op, codes):
return "The computer takes the top two values from the stack, " \

"creates a slice object from them, and places it on top of the stack."

@descriptor
def BUILD_TUPLE (op, codes):
if op.argval == 1:
return "The computer takes the top value from the stack, " \
"creates a tuple from it, and places it on top of the stack."
return "The computer takes the top {} values from the stack, " \
"creates a tuple from them, and places it on top of the stack.".format (

describe_number (op.argval))

@descriptor
def FOR_ITER (op, codes):
return "The computer looks at the top value on the stack and " \
"calls its ‘next ()’ method. If it returns a value, " \
"it places it on top of the stack. If not, it removes " \
"the top value from the stack and jumps to offset {}.".format (
op.argval)

@descriptor
def GET_ITER(op, codes):
return "The computer takes the top value from the stack, " \
"turns it into an iterator (using “iter () ), " \

"and places the result on top of the stack.”

@descriptor
def INPLACE_ADD (op, codes):
return "The computer takes the top value from the stack and (in place)" \
"adds the second from top value from the stack to it, " \

"placing the result on top of the stack."

@descriptor



16 CHAPTER 2. SOURCE CODE

def JUMP_ABSOLUTE (op, codes):
return "The computer jumps to offset {}.".format (op.argval)

@descriptor
def JUMP_FORWARD (op, codes) :
return "The computer jumps forward to offset {}.".format (op.argval)

@descriptor
def LIST_APPEND (op, codes):
return "The computer takes the top value from the stack and appends it " \
"to the list stored {} places from the top of the stack.".format (
describe_number (op.argval))

@descriptor
def LOAD_CLOSURE (op, codes) :
return "The computer loads a reference to the free variable named “{} " \
"and places it on top of the stack.".format (

op.argval)

Qdescriptor
def LOAD_DEREF (op, codes):
return "The computer loads the contents of the free variable named " {} "
"and places it on top of the stack.".format (
op.argval)

@descriptor
def LOAD_FAST (op, codes):
return "The computer loads a reference to the local variable named "~ {}° "
"and places it on top of the stack.".format (
op.argval)

@descriptor
def LOAD_GLOBAL (op, codes):
return "The computer loads a reference to the global variable named “{} "
"and places it on top of the stack.".format (
op.argval)

@descriptor
def POP_BLOCK (op, codes):
return "The computer removes one block from the block stack."

@descriptor
def SETUP_LOOP (op, codes):
return "The computer places a new block for a loop on top of " \

"the block stack, extending until offset {}.".format (
op.argval)

@descriptor
def STORE_DEREF (op, codes):
return "The computer takes the top value from the stack and stores " \
"it in the free variable named " {} .".format (



17

op.argval)

@descriptor
def STORE_FAST (op, codes):
return "The computer takes the top value from the stack and stores " \
"it in the local variable named " {} .".format (

op.argval)

@descriptor
def STORE_SUBSCR (op, codes):
return "The computer takes the top value from the stack, " \
"uses it to index into the next-from-top value, " \

"and stores the value below that in that location."

@descriptor
def UNPACK_SEQUENCE (op, codes):
return "The computer takes the top value from the stack, " \
"unpacks it into {} values, " \
"then places them each on top of the stack.".format (

describe_number (op.argval))

@descriptor
def YIELD_VALUE (op, codes):
return "The computer takes the top value from the stack " \

"and yields it from the current generator."

@descriptor
def CALL_FUNCTION_KW (op, codes):
return "The computer takes the top value from the stack " \

"and interprets it as a tuple of keyword names. " \
"It then takes values from the top of the stack as " \
"corresponding values, followed by positional arguments " \
"up to a total of {} values (both keyword and positional). " \
"Then it takes the next value from the top of the stack and " \
"calls it as a function with these arguments, " \
"placing the return value on top of the stack.".format (

op.argval)

@descriptor
def DUP_TOP (op, codes):
return "The computer duplicates the top value on the stack, " \

"placing the new copy on top of the stack."

@descriptor
def ROT_TWO (op, codes):
return "The computer takes the top two values from the stack, " \
"swaps them, and replaces them on top of the stack."

@descriptor
def ROT_THREE (op, codes):
return "The computer takes the top three values from the stack, " \

"rotates them so that the top value is now on the bottom, " \



18

CHAPTER 2. SOURCE CODE

"and replaces them on top of the stack."

@descriptor
def UNARY_NEGATIVE (op, codes):

return "The computer takes the top value from the stack,

"and places the result on top of the stack."”

@descriptor

def JUMP_IF_FALSE_OR_POP (op, codes):

if

return "The computer looks at the top value on the stack. " \
"If it is false-like (e.g. False, None or zero),
"to offset {}. Otherwise it removes the top value from the stack."

__name__ == '_ _main__ ':
outfile = sys.argv[l]
filename = _ file_
if len(sys.argv) > 2:
filename = sys.argv[2]
f = open(outfile, "w")
f.write (describe_file(filename))
f.close()

it Jumps

n

negates it,

\



Chapter 3

Abstract syntax tree

A module, containing the following code:

An import statement for a module named ast.

An import statement for a module named dis.

An import statement for a module named re.

An import statement for a module named sys.

An import statement for a module named types.

An assignment to the name title, of the value of the literal string “The
Program Which Generates This Book’.

An assignment to the name author, of the value of the literal string ‘Martin
O’Leary’.

An assignment to the name preface, of the value of a function call, call-
ing the value of an attribute lookup of format on the literal string “\nThis
book describes a computer program which, when executed, generates this\nbook. The
program is described in three ways:\n\nFirst, a source code listing is given, in the
Python programming language. This\nis the form of the program which was typed
by the author, in text form.\n\nSecond, an *abstract syntax tree* is described, which
is the computer’s\ninterpretation of the textual source code in terms of the language
constructs\navailable in the Python programming language \n\nFinally, the program
is described in terms of *bytecode®, the computer’s internal\nrepresentation of the source
code, a sequence of unambiguous instructions which\ncan be executed to perform the
computation described by the program.\n\nThe descriptions given in this book are gen-
erated by the program it describes, in\nconjunction with a Python interpreter, starting
from the source code form. Both \nthe abstract syntax tree and the bytecode represen-
tation are somewhat unstable.\nDifferent versions of the Python interpreter may yield
different abstract syntax\ntrees and different bytecode representations of the same pro-
gram. This book was\ngenerated using ‘Python {}'\n’, with argument an attribute
lookup of version on the name sys.

title_block

A definition of a function named title_block The body of the function is as
follows:

A return statement, returning the value of a function call, calling the value of
an attribute lookup of format on the literal string *% { \n% {/\n’, with positional
arguments the name title, and the name author.

The function title_block ends here.

describe_op

A definition of a function named describe_op, with positional arguments op,
and codes. The body of the function is as follows:

19



20 CHAPTER 3. ABSTRACT SYNTAX TREE

An assignment to the name £, of the value of a function call, calling the
value of an attribute lookup of get on the name descriptors, with positional
arguments an attribute lookup of opname on the name op, and the constant
None.

An if statement, testing the name f£. The body of the main branch is as
follows:

An assignment to the name s, of the value of a function call, calling the value
of the name f, with positional arguments the name op, and the name codes.

The other (‘else’) branch of the i f statement is as follows:

An assignment to the name s, of the value of the literal string ”.

The i f statement ends here.

An if statement, testing an attribute lookup of is_jump_target on the
name op. The body of the main branch is as follows:

An assignment to the name s, of the value of the addition (or concatenation)
operator, with left hand side a function call, calling the value of an attribute
lookup of format on the literal string “\n\n### Offset { \n\n’, with argument
an attribute lookup of of fset on the name op, and right hand side the name s.

The i f statement ends here.

A return statement, returning the value of the name s.

The function describe_op ends here.

describe_file

A definition of a function named describe_file, with argument filename.
The body of the function is as follows:

An assignment to the name codetxt, of the value of a function call, calling
the value of an attribute lookup of read on a function call, calling the value of the
name open, with argument the name filename with no positional arguments.

An assignment to the name txt, of the value of a function call, calling the
value of the name title_block with no positional arguments.

A modifying assignment to the name txt, using the addition (or concatena-
tion) operator, of the value of the literal string “# About this book\n\n’.

A modifying assignment to the name t xt, using the addition (or concatena-
tion) operator, of the value of the name preface.

A modifying assignment to the name txt, using the addition (or concatena-
tion) operator, of the value of the literal string “\n\n## License\n\n’.

A modifying assignment to the name t xt, using the addition (or concatena-
tion) operator, of the value of a function call, calling the value of an attribute
lookup of read on a function call, calling the value of the name open, with
argument the literal string ‘LICENSE.md’ with no positional arguments.

A modifying assignment to the name t xt, using the addition (or concatena-
tion) operator, of the value of the literal string “\n\n# Source code\n\n’.

A modifying assignment to the name txt, using the addition (or concatena-
tion) operator, of the value of the addition (or concatenation) operator, with left
hand side the addition (or concatenation) operator, with left hand side the literal
string ““\n’, and right hand side the name codetxt, and right hand side the
literal string “\n“"\n\n’.

A modifying assignment to the name t xt, using the addition (or concatena-
tion) operator, of the value of the literal string # Abstract syntax tree\n\n’.

A modifying assignment to the name txt, using the addition (or concate-
nation) operator, of the value of a function call, calling the value of the name
describe_node, with argument a function call, calling the value of an attribute
lookup of parse on the name ast, with argument the name codetxt.

A modifying assignment to the name t xt, using the addition (or concatena-
tion) operator, of the value of the literal string “\n\n# Bytecode\n\n’.

An assignment to the name codes, of the value of a list containing a tuple
containing the name filename, and a function call, calling the value of the name
compile, with positional arguments the name codetxt, the name filename,



DESCRIBE_NUMBER 21

and the literal string ‘exec’, and keyword argument, assigning a numeric constant
with value 1 as optimize.

A while loop, testing the name codes.The body of the loop is as follows:

An assignment to a tuple containing the name name, and the name code, of
the value of a function call, calling the value of an attribute lookup of pop on the
name codes, with argument a numeric constant with value 0.

A modifying assignment to the name txt, using the addition (or concatena-
tion) operator, of the value of a function call, calling the value of an attribute
lookup of format on the literal string “## {}', with argument the name name.

A for loop, where the name op iterates over a function call, calling the value
of an attribute lookup of get _instructions on the name dis, with argument
the name code.The body of the loop is as follows:

An assignment to the name desc, of the value of a function call, calling the
value of the name describe_op, with positional arguments the name op, and
the name codes.

An if statement, testing the unary ‘not’ operator applied to the name desc.
The body of the main branch is as follows:

A ‘continue’ statement.

The i f statement ends here.

An if statement, testing an attribute lookup of starts_line on the name
op. The body of the main branch is as follows:

A modifying assignment to the name t xt, using the addition (or concatena-
tion) operator, of the value of the literal string "\n\n’".

The i f statement ends here.

A modifying assignment to the name txt, using the addition (or concatena-
tion) operator, of the value of the addition (or concatenation) operator, with left
hand side the name desc, and right hand side the literal string “'.

The for loop ends here.

A modifying assignment to the name txt, using the addition (or concatena-
tion) operator, of the value of the literal string “\n\n’".

The while loop ends here.

A return statement, returning the value of the name txt.

The function describe_file ends here.

describe_number

A definition of a function named describe_number, with argument num. The
body of the function is as follows:

An assignment to the name words, of the value of a list containing the literal
string ‘zero’, the literal string ‘one’, the literal string ‘two’, the literal string ‘three’,
the literal string ‘four’, the literal string ‘five’, the literal string ‘six’, the literal
string ‘seven’, the literal string ‘eight’, the literal string ‘nine’, and the literal string
“ten’.

An if statement, testing a compound comparison, comparing a numeric
constant with value 0 and the name num using the ‘less than or equal to” operator,
and the name num and a numeric constant with value 10 using the ‘less than or
equal to” operator. The body of the main branch is as follows:

A return statement, returning the value of the name words, subscripted by
the name num.

The other (‘else’) branch of the if statement is as follows:

An if statement, testing a comparison (using the ‘greater than or equal to’
operator) of the name num and the unary negation operator applied to a numeric
constant with value 10. The body of the main branch is as follows:

A return statement, returning the value of the addition (or concatenation)
operator, with left hand side the literal string ‘minus’, and right hand side the
name words, subscripted by the unary negation operator applied to the name
num.

The if statement ends here.

The i f statement ends here.



22 CHAPTER 3. ABSTRACT SYNTAX TREE

A return statement, returning the value of a function call, calling the value of
the name str, with argument the name num.
The function describe_number ends here.

as_list

A definition of a function named as_1ist, with argument items. The body of
the function is as follows:

An assignment to the name items, of the value of a function call, calling the
value of the name 1ist, with argument the name items.

An if statement, testing a comparison (using the equality operator) of a
function call, calling the value of the name 1en, with argument the name items
and a numeric constant with value 1. The body of the main branch is as follows:

A return statement, returning the value of the name items, subscripted by a
numeric constant with value 0.

The other (‘else’) branch of the i f statement is as follows:

A return statement, returning the value of the addition (or concatenation)
operator, with left hand side the addition (or concatenation) operator, with left
hand side a function call, calling the value of an attribute lookup of join on
the literal string ,’, with argument the name items, subscripted by a slice up
to the unary negation operator applied to a numeric constant with value 1, and
right hand side the literal string *, and’, and right hand side the name items,
subscripted by the unary negation operator applied to a numeric constant with
value 1.

The if statement ends here.

The function as_list ends here.

escape_string

A definition of a function named escape_string, with argument s. The body
of the function is as follows:

An assignment to the name s, of the value of a function call, calling the value
of an attribute lookup of sub on the name re, with positional arguments the
literal string “([_"\*\\#])’, the literal string "\\\1’, and the name s.

An assignment to the name s, of the value of a function call, calling the value
of an attribute lookup of sub on the name re, with positional arguments the
literal string “\n’, the literal string "\\\\#n’, and the name s.

A return statement, returning the value of the name s.

The function escape_string ends here.

describe_value

A definition of a function named describe_value, with positional arguments
value, and codes. The body of the function is as follows:

An if statement, testing a function call, calling the value of the name
isinstance, with positional arguments the name value, and an attribute
lookup of CodeType on the name types. The body of the main branch is as
follows:

An assignment to the name name, of the value of an attribute lookup of
co_name on the name value.

An if statement, testing a function call, calling the value of an attribute
lookup of startswith on the name name, with argument the literal string ‘<’.
The body of the main branch is as follows:

An assignment to the name name, of the value of the addition (or concatena-
tion) operator, with left hand side the addition (or concatenation) operator, with
left hand side an attribute lookup of co_name on the name value, subscripted
by a slice from a numeric constant with value 1 to the unary negation operator
applied to a numeric constant with value 1, and right hand side the literal string



DESCRIBE_NODE 23

‘’, and right hand side a function call, calling the value of the name str, with
argument an attribute lookup of co_firstlineno on the name value.

The i f statement ends here.

A bare expression with value a function call, calling the value of an attribute
lookup of append on the name codes, with argument a tuple containing the
name name, and the name value.

A return statement, returning the value of a function call, calling the value of
an attribute lookup of format on the literal string ‘the code object described under
{}, with argument the name name.

The other (‘else’) branch of the i f statement is as follows:

An if statement, testing a function call, calling the value of the name
isinstance, with positional arguments the name value, and the name str.
The body of the main branch is as follows:

A return statement, returning the value of a function call, calling the value of
an attribute lookup of format on the literal string ‘the literal string *'{}"*’, with
argument a function call, calling the value of the name escape_string, with
argument the name value.

The other (‘else’) branch of the i f statement is as follows:

An if statement, testing a function call, calling the value of the name
isinstance, with positional arguments the name value, and the name int.
The body of the main branch is as follows:

A return statement, returning the value of a function call, calling the value
of an attribute lookup of format on the literal string ‘the integer constant {}’,
with argument a function call, calling the value of the name describe_number,
with argument the name value.

The other (‘else’) branch of the i f statement is as follows:

An if statement, testing a comparison (using the identity operator) of the
name value and the constant None. The body of the main branch is as follows:

A return statement, returning the value of the literal string ‘the constant None’'.

The other (‘else’) branch of the i f statement is as follows:

An if statement, testing a function call, calling the value of the name
isinstance, with positional arguments the name value, and the name tuple.
The body of the main branch is as follows:

A return statement, returning the value of the addition (or concatenation)
operator, with left hand side the literal string ‘the tuple consisting of’, and right
hand side a function call, calling the value of the name as_11ist, with argument
a generator expression, taking the value of a function call, calling the value of the
name describe_value, with positional arguments the name x, and the name
codes, as the name x ranges over the name value.

The other (‘else’) branch of the i f statement is as follows:

A bare expression with value a function call, calling the value of the name
print, with positional arguments the literal string ‘“Uninterpretable constant.’,
and the name value.

The i f statement ends here.

The i f statement ends here.

The i f statement ends here.

The i f statement ends here.

The if statement ends here.

A return statement, returning the value of a function call, calling the value of
the name repr, with argument the name value.

The function describe_value ends here.

describe_node

A definition of a function named describe_node, with argument node. The
body of the function is as follows:

An assignment to the name £, of the value of a function call, calling the value
of an attribute lookup of get on the name descriptors, with positional argu-



24 CHAPTER 3. ABSTRACT SYNTAX TREE

ments an attribute lookup of __name___ on an attribute lookup of __class___
on the name node, and the constant None.

An if statement, testing the name f. The body of the main branch is as
follows:

A return statement, returning the value of a function call, calling the value of
the name £, with argument the name node.

The other (‘else’) branch of the i f statement is as follows:

A bare expression with value a function call, calling the value of the name
print, with positional arguments the name node, and an attribute lookup of
_fields on the name node.

A return statement, returning the value of a function call, calling the value of
the name str, with argument the name node.

The i f statement ends here.

The function describe_node ends here.

An assignment to the name descriptors, of the value of an empty dictio-
nary.

descriptor

A definition of a function named descriptor, with argument £. The body of
the function is as follows:

An assignment to the name descriptors, subscripted by an attribute
lookup of __name__ on the name £, of the value of the name f.

A return statement, returning the value of the name f.

The function descriptor ends here.

Module

A definition of a function named Module, with argument node. The definition
is decorated with the function descriptor. The body of the function is as
follows:

A return statement, returning the value of the addition (or concatenation)
operator, with left hand side the literal string ‘A module, containing the follow-
ing code:\n\n’, and right hand side a function call, calling the value of an at-
tribute lookup of join on the literal string "\n\n’, with argument a generator
expression, taking the value of a function call, calling the value of the name
describe_node, with argument the name n, as the name n ranges over an
attribute lookup of body on the name node.

The function Module ends here.

Import

A definition of a function named Import, with argument node. The definition
is decorated with the function descriptor. The body of the function is as
follows:

A return statement, returning the value of a function call, calling the value
of an attribute lookup of format on the literal string ‘An import statement for a
module named ‘{}'.”, with argument an attribute lookup of name on an attribute
lookup of names on the name node, subscripted by a numeric constant with
value 0.

The function Import ends here.

Assign
A definition of a function named Assign, with argument node. The definition

is decorated with the function descriptor. The body of the function is as
follows:



AUGASSIGN 25

An assignment to the name s, of the value of a function call, calling the value
of an attribute lookup of format on the literal string “An assignment to {}, of the
value of {}.", with positional arguments a function call, calling the value of the
name describe_node, with argument an attribute lookup of targets on the
name node, subscripted by a numeric constant with value 0, and a function
call, calling the value of the name describe_node, with argument an attribute
lookup of value on the name node.

A return statement, returning the value of the name s.

The function Assign ends here.

AugAssign

A definition of a function named AugAssign, with argument node. The defini-
tion is decorated with the function descriptor. The body of the function is as
follows:

An assignment to the name s, of the value of a function call, calling the
value of an attribute lookup of format on the literal string ‘A modifying assign-
ment to {}, using {}, of the value of {}.”, with positional arguments a function call,
calling the value of the name describe_node, with argument an attribute
lookup of target on the name node, a function call, calling the value of the
name describe_node, with argument an attribute lookup of op on the name
node, and a function call, calling the value of the name describe_node, with
argument an attribute lookup of value on the name node.

A return statement, returning the value of the name s.

The function AugAssign ends here.

Add

A definition of a function named Add, with argument node. The definition is
decorated with the function descriptor. The body of the function is as follows:
A return statement, returning the value of the literal string ‘the addition (or
concatenation) operator’.
The function Add ends here.

Mult

A definition of a function named Mult, with argument node. The definition
is decorated with the function descriptor. The body of the function is as
follows:

A return statement, returning the value of the literal string ‘the multiplication
operator’.

The function Mult ends here.

BitAnd

A definition of a function named BitAnd, with argument node. The definition
is decorated with the function descriptor. The body of the function is as
follows:

A return statement, returning the value of the literal string ‘the bitwise "AND’
operator’.

The function BitAnd ends here.

Subscript

A definition of a function named Subscript, with argument node. The defini-
tion is decorated with the function descriptor. The body of the function is as
follows:



26 CHAPTER 3. ABSTRACT SYNTAX TREE

A return statement, returning the value of a function call, calling the value of
an attribute lookup of format on the literal string ‘{}, subscripted by {}', with posi-
tional arguments a function call, calling the value of the name describe_node,
with argument an attribute lookup of value on the name node, and a function
call, calling the value of the name describe_node, with argument an attribute
lookup of s1ice on the name node.

The function Subscript ends here.

Index

A definition of a function named Index, with argument node. The definition
is decorated with the function descriptor. The body of the function is as
follows:

A return statement, returning the value of a function call, calling the value of
the name describe_node, with argument an attribute lookup of value on the
name node.

The function Index ends here.

Slice

A definition of a function named S1ice, with argument node. The definition
is decorated with the function descriptor. The body of the function is as
follows:

An if statement, testing an attribute lookup of lower on the name node.
The body of the main branch is as follows:

A return statement, returning the value of a function call, calling the value of
an attribute lookup of format on the literal string ‘a slice from {} to {}', with posi-
tional arguments a function call, calling the value of the name describe_node,
with argument an attribute lookup of 1ower on the name node, and a function
call, calling the value of the name describe_node, with argument an attribute
lookup of upper on the name node.

The other (‘else’) branch of the i f statement is as follows:

A return statement, returning the value of a function call, calling the value of
an attribute lookup of format on the literal string ‘a slice up to {}’, with argument
a function call, calling the value of the name describe_node, with argument
an attribute lookup of upper on the name node.

The i f statement ends here.

The function Slice ends here.

For

A definition of a function named For, with argument node. The definition is
decorated with the function descriptor. The body of the function is as follows:

An assignment to the name s, of the value of a function call, calling the value
of an attribute lookup of format on the literal string ‘A for loop, where {} iterates
over {}.The body of the loop is as follows:\n\n’, with positional arguments a function
call, calling the value of the name describe_node, with argument an attribute
lookup of target on the name node, and a function call, calling the value of
the name describe_node, with argument an attribute lookup of iter on the
name node.

A for loop, where the name nod iterates over an attribute lookup of body on
the name node.The body of the loop is as follows:

A modifying assignment to the name s, using the addition (or concatenation)
operator, of the value of the addition (or concatenation) operator, with left
hand side a function call, calling the value of the name describe_node, with
argument the name nod, and right hand side the literal string “\n\n".

The for loop ends here.



WHILE 27

A modifying assignment to the name s, using the addition (or concatenation)
operator, of the value of the literal string “The for loop ends here.’.

A return statement, returning the value of the name s.

The function For ends here.

While

A definition of a function named While, with argument node. The definition
is decorated with the function descriptor. The body of the function is as
follows:

An assignment to the name s, of the value of a function call, calling the value
of an attribute lookup of format on the literal string ‘A while loop, testing {}.The
body of the loop is as follows:\n\n’, with argument a function call, calling the value
of the name describe_node, with argument an attribute lookup of test on
the name node.

A for loop, where the name nod iterates over an attribute lookup of body on
the name node.The body of the loop is as follows:

A modifying assignment to the name s, using the addition (or concatenation)
operator, of the value of the addition (or concatenation) operator, with left
hand side a function call, calling the value of the name describe_node, with
argument the name nod, and right hand side the literal string “\n\n’.

The for loop ends here.

A modifying assignment to the name s, using the addition (or concatenation)
operator, of the value of the literal string “The while loop ends here.’.

A return statement, returning the value of the name s.

The function While ends here.

Continue

A definition of a function named Cont inue, with argument node. The defini-
tion is decorated with the function descriptor. The body of the function is as
follows:

A return statement, returning the value of the literal string ‘A ’continue’ state-
ment.”.

The function Continue ends here.

Name

A definition of a function named Name, with argument node. The definition
is decorated with the function descriptor. The body of the function is as
follows:

A return statement, returning the value of a function call, calling the value of
an attribute lookup of format on the literal string ‘the name ‘{}”, with argument
an attribute lookup of id on the name node.

The function Name ends here.

NameConstant

A definition of a function named NameConstant, with argument node. The
definition is decorated with the function descriptor. The body of the function
is as follows:

A return statement, returning the value of a function call, calling the value
of an attribute lookup of format on the literal string ‘the constant ‘{}, with
argument an attribute lookup of value on the name node.

The function NameConstant ends here.



28 CHAPTER 3. ABSTRACT SYNTAX TREE

List

A definition of a function named List, with argument node. The definition
is decorated with the function descriptor. The body of the function is as
follows:

An if statement, testing the unary ‘not” operator applied to an attribute
lookup of e1ts on the name node. The body of the main branch is as follows:
A return statement, returning the value of the literal string ‘an empty list’.

The other (‘else’) branch of the i f statement is as follows:

A return statement, returning the value of the addition (or concatenation)
operator, with left hand side the literal string ‘a list containing’, and right hand
side a function call, calling the value of the name as_1list, with argument a
generator expression, taking the value of a function call, calling the value of the
name describe_node, with argument the name elt, as the name elt ranges
over an attribute lookup of elts on the name node.

The if statement ends here.

The function List ends here.

Tuple

A definition of a function named Tuple, with argument node. The definition
is decorated with the function descriptor. The body of the function is as
follows:

An if statement, testing the unary ‘not” operator applied to an attribute
lookup of elts on the name node. The body of the main branch is as follows:

A return statement, returning the value of the literal string ‘an empty tuple’.

The other (‘else’) branch of the i f statement is as follows:

A return statement, returning the value of the addition (or concatenation)
operator, with left hand side the literal string ‘a tuple containing’, and right hand
side a function call, calling the value of the name as_1list, with argument a
generator expression, taking the value of a function call, calling the value of the
name describe_node, with argument the name elt, as the name elt ranges
over an attribute lookup of e1ts on the name node.

The if statement ends here.

The function Tuple ends here.

Dict

A definition of a function named Dict, with argument node. The definition
is decorated with the function descriptor. The body of the function is as
follows:

A return statement, returning the value of the literal string ‘an empty dictio-
nary’.

The function Dict ends here.

FunctionDef

A definition of a function named FunctionDef, with argument node. The
definition is decorated with the function descriptor. The body of the function
is as follows:

An assignment to the name s, of the value of a function call, calling the
value of an attribute lookup of format on the literal string ‘## {node.name/\n\nA
definition of a function named ‘{node.name}”” with no positional arguments, and
keyword argument, assigning the name node as node.

An assignment to the name args, of the value of an attribute lookup of args
on the name node.

An if statement, testing a comparison (using the equality operator) of a
function call, calling the value of the name len, with argument an attribute



CALL 29

lookup of args on the name args and a numeric constant with value 1. The
body of the main branch is as follows:

A modifying assignment to the name s, using the addition (or concatenation)
operator, of the value of a function call, calling the value of an attribute lookup
of format on the literal string °, with argument ‘{}.”, with argument an attribute
lookup of arg on an attribute lookup of args on the name args, subscripted
by a numeric constant with value 0.

The other (‘else’) branch of the i f statement is as follows:

An if statement, testing an attribute lookup of args on the name args. The
body of the main branch is as follows:

A modifying assignment to the name s, using the addition (or concatenation)
operator, of the value of a function call, calling the value of an attribute lookup of
format on the literal string *, with positional arguments {args}.” with no positional
arguments, and keyword argument, assigning a function call, calling the value
of the name as_1ist, with argument a list comprehension, taking the value of
a function call, calling the value of an attribute lookup of format on the literal
string “{}”’, with argument an attribute lookup of arg on the name a, as the name
a ranges over an attribute lookup of args on the name args as args.

The if statement ends here.

The if statement ends here.

An if statement, testing an attribute lookup of decorator_list on the
name node. The body of the main branch is as follows:

A modifying assignment to the name s, using the addition (or concatenation)
operator, of the value of a function call, calling the value of an attribute lookup of
format on the literal string “The definition is decorated with the function ‘{}'.”, with
argument an attribute lookup of id on an attribute lookup of decorator_list
on the name node, subscripted by a numeric constant with value 0.

The if statement ends here.

A modifying assignment to the name s, using the addition (or concatenation)
operator, of the value of the literal string “The body of the function is as follows:\n\n’.

A for loop, where the name nod iterates over an attribute lookup of body on
the name node.The body of the loop is as follows:

A modifying assignment to the name s, using the addition (or concatenation)
operator, of the value of the addition (or concatenation) operator, with left
hand side a function call, calling the value of the name describe_node, with
argument the name nod, and right hand side the literal string “\n\n".

The for loop ends here.

A modifying assignment to the name s, using the addition (or concatenation)
operator, of the value of a function call, calling the value of an attribute lookup
of format on the literal string ‘The function {} ends here.\n\n’, with argument an
attribute lookup of name on the name node.

A return statement, returning the value of the name s.

The function FunctionDef ends here.

Call

A definition of a function named Call, with argument node. The definition
is decorated with the function descriptor. The body of the function is as
follows:

An assignment to the name s, of the value of a function call, calling the value
of an attribute lookup of format on the literal string ‘a function call, calling the
value of {f}” with no positional arguments, and keyword argument, assigning a
function call, calling the value of the name describe_node, with argument an
attribute lookup of func on the name node as f.

An if statement, testing a comparison (using the equality operator) of a
function call, calling the value of the name len, with argument an attribute
lookup of args on the name node and a numeric constant with value 1. The
body of the main branch is as follows:



30 CHAPTER 3. ABSTRACT SYNTAX TREE

A modifying assignment to the name s, using the addition (or concatenation)
operator, of the value of a function call, calling the value of an attribute lookup
of format on the literal string *, with arqument {}', with argument a function
call, calling the value of the name describe_node, with argument an attribute
lookup of args on the name node, subscripted by a numeric constant with value
0.

The other (‘else’) branch of the i f statement is as follows:

An if statement, testing an attribute lookup of args on the name node. The
body of the main branch is as follows:

A modifying assignment to the name s, using the addition (or concatenation)
operator, of the value of a function call, calling the value of an attribute lookup of
format on the literal string *, with positional arguments {args})” with no positional
arguments, and keyword argument, assigning a function call, calling the value of
the name as_1ist, with argument a generator expression, taking the value of
a function call, calling the value of the name describe_node, with argument
the name a, as the name a ranges over an attribute lookup of args on the name
node as args.

The other (‘else’) branch of the i f statement is as follows:

A modifying assignment to the name s, using the addition (or concatenation)
operator, of the value of the literal string “with no positional arguments’.

The if statement ends here.

The if statement ends here.

An i f statement, testing an attribute lookup of keywords on the name node.
The body of the main branch is as follows:

An if statement, testing a comparison (using the equality operator) of a
function call, calling the value of the name len, with argument an attribute
lookup of keywords on the name node and a numeric constant with value 1.
The body of the main branch is as follows:

A modifying assignment to the name s, using the addition (or concatenation)
operator, of the value of the literal string *, and keyword argument’.

The other (‘else’) branch of the i f statement is as follows:

A modifying assignment to the name s, using the addition (or concatenation)
operator, of the value of the literal string *, and keyword arguments’.

The i f statement ends here.

A for loop, where the name kw iterates over an attribute lookup of keywords
on the name node.The body of the loop is as follows:

A modifying assignment to the name s, using the addition (or concatenation)
operator, of the value of a function call, calling the value of an attribute lookup
of format on the literal string *, assigning {} as ‘{}’, with positional arguments a
function call, calling the value of the name describe_node, with argument an
attribute lookup of value on the name kw, and an attribute lookup of arg on
the name kw.

The for loop ends here.

The if statement ends here.

A return statement, returning the value of the name s.

The function Call ends here.

Return

A definition of a function named Return, with argument node. The definition
is decorated with the function descriptor. The body of the function is as
follows:

A return statement, returning the value of a function call, calling the value of
an attribute lookup of format on the literal string ‘A return statement, returning
the value of {}.”, with argument a function call, calling the value of the name
describe_node, with argument an attribute lookup of value on the name
node.

The function Return ends here.



STR 31

Str

A definition of a function named St r, with argument node. The definition is
decorated with the function descriptor. The body of the function is as follows:
A return statement, returning the value of a function call, calling the value of
an attribute lookup of format on the literal string ‘the literal string *'{}**’, with
argument a function call, calling the value of the name escape_string, with
argument an attribute lookup of s on the name node.
The function Str ends here.

Attribute

A definition of a function named Attribute, with argument node. The defini-
tion is decorated with the function descriptor. The body of the function is as
follows:

A return statement, returning the value of a function call, calling the value of
an attribute lookup of format on the literal string ‘an attribute lookup of ‘{} on {},
with positional arguments an attribute lookup of att r on the name node, and a
function call, calling the value of the name describe_node, with argument an
attribute lookup of value on the name node.

The function Attribute ends here.

Expr

A definition of a function named Expr, with argument node. The definition
is decorated with the function descriptor. The body of the function is as
follows:

A return statement, returning the value of a function call, calling the value of
an attribute lookup of format on the literal string ‘A bare expression with value {}.’,
with argument a function call, calling the value of the name describe_node,
with argument an attribute lookup of value on the name node.

The function Expr ends here.

BinOp

A definition of a function named BinOp, with argument node. The definition
is decorated with the function descriptor. The body of the function is as
follows:

A return statement, returning the value of a function call, calling the value of
an attribute lookup of format on the literal string ‘{}, with left hand side {}, and
right hand side {}’, with positional arguments a function call, calling the value
of the name describe_node, with argument an attribute lookup of op on the
name node, a function call, calling the value of the name describe_node,
with argument an attribute lookup of 1eft on the name node, and a function
call, calling the value of the name describe_node, with argument an attribute
lookup of right on the name node.

The function BinOp ends here.

If

A definition of a function named If, with argument node. The definition is
decorated with the function descriptor. The body of the function is as follows:

An assignment to the name s, of the value of a function call, calling the value
of an attribute lookup of format on the literal string ‘An “if’ statement, testing
{1. The body of the main branch is as follows:\n\n’, with argument a function call,
calling the value of the name describe_node, with argument an attribute
lookup of test on the name node.



32 CHAPTER 3. ABSTRACT SYNTAX TREE

A for loop, where the name nod iterates over an attribute lookup of body on
the name node.The body of the loop is as follows:

A modifying assignment to the name s, using the addition (or concatenation)
operator, of the value of the addition (or concatenation) operator, with left
hand side a function call, calling the value of the name describe_node, with
argument the name nod, and right hand side the literal string "\n\n’.

The for loop ends here.

An if statement, testing an attribute lookup of orelse on the name node.
The body of the main branch is as follows:

A modifying assignment to the name s, using the addition (or concatenation)
operator, of the value of the literal string “The other (“else’) branch of the ‘if’ statement
is as follows:\n\n’.

A for loop, where the name nod iterates over an attribute lookup of orelse
on the name node.The body of the loop is as follows:

A modifying assignment to the name s, using the addition (or concatenation)
operator, of the value of the addition (or concatenation) operator, with left
hand side a function call, calling the value of the name describe_node, with
argument the name nod, and right hand side the literal string “\n\n’".

The for loop ends here.

The if statement ends here.

A modifying assignment to the name s, using the addition (or concatenation)
operator, of the value of the literal string “The “if’ statement ends here.\n\n’.

A return statement, returning the value of the name s.

The function If ends here.

Num

A definition of a function named Num, with argument node. The definition is
decorated with the function descriptor. The body of the function is as follows:
A return statement, returning the value of a function call, calling the value of
an attribute lookup of format on the literal string ‘a numeric constant with value
{¥, with argument an attribute lookup of n on the name node.
The function Num ends here.

Compare

A definition of a function named Compare, with argument node. The definition
is decorated with the function descriptor. The body of the function is as
follows:

An if statement, testing a comparison (using the equality operator) of a
function call, calling the value of the name len, with argument an attribute
lookup of ops on the name node and a numeric constant with value 1. The body
of the main branch is as follows:

A return statement, returning the value of a function call, calling the value
of an attribute lookup of format on the literal string ‘a comparison (using {})
of {} and {}', with positional arguments a function call, calling the value of the
name describe_node, with argument an attribute lookup of ops on the name
node, subscripted by a numeric constant with value 0, a function call, calling
the value of the name describe_node, with argument an attribute lookup
of left on the name node, and a function call, calling the value of the name
describe_node, with argument an attribute lookup of comparators on the
name node, subscripted by a numeric constant with value 0.

The other (‘else’) branch of the i f statement is as follows:

An assignment to the name lefts, of the value of the addition (or concatena-
tion) operator, with left hand side a list containing an attribute lookup of left
on the name node, and right hand side an attribute lookup of comparators on
the name node, subscripted by a slice up to the unary negation operator applied
to a numeric constant with value 1.



EQ 33

An assignment to the name rights, of the value of an attribute lookup of
comparators on the name node.

An assignment to the name s, of the value of the literal string ‘a compound
comparison, comparing’.

A modifying assignment to the name s, using the addition (or concatenation)
operator, of the value of a function call, calling the value of the name as_1list,
with argument a generator expression, taking the value of a function call, calling
the value of an attribute lookup of format on the literal string ‘{} and {} using
{}', with positional arguments a function call, calling the value of the name
describe_node, with argument the name left, a function call, calling the
value of the name describe_node, with argument the name right, and a
function call, calling the value of the name describe_node, with argument
the name op, as a tuple containing the name left, the name op, and the name
right ranges over a function call, calling the value of the name zip, with
positional arguments the name lefts, an attribute lookup of ops on the name
node, and the name rights.

A return statement, returning the value of the name s.

The if statement ends here.

The function Compare ends here.

Eq

A definition of a function named Eg, with argument node. The definition is
decorated with the function descriptor. The body of the function is as follows:
A return statement, returning the value of the literal string “the equality opera-

tor’.
The function Eq ends here.

GtE

A definition of a function named GtE, with argument node. The definition is
decorated with the function descriptor. The body of the function is as follows:
A return statement, returning the value of the literal string ‘the ‘greater than or
equal to” operator’.
The function GtE ends here.

LtE

A definition of a function named LtE, with argument node. The definition is
decorated with the function descriptor. The body of the function is as follows:
A return statement, returning the value of the literal string ‘the ‘less than or
equal to” operator’.
The function LtE ends here.

Gt

A definition of a function named Gt, with argument node. The definition is
decorated with the function descriptor. The body of the function is as follows:
A return statement, returning the value of the literal string ‘the ‘greater than’
operator’.
The function Gt ends here.

Is

A definition of a function named Is, with argument node. The definition is
decorated with the function descriptor. The body of the function is as follows:



34 CHAPTER 3. ABSTRACT SYNTAX TREE

A return statement, returning the value of the literal string ‘the identity opera-

tor’.
The function Is ends here.

UnaryOp

A definition of a function named UnaryOp, with argument node. The definition
is decorated with the function descriptor. The body of the function is as
follows:

A return statement, returning the value of a function call, calling the value of
an attribute lookup of format on the literal string {} applied to {}’, with positional
arguments a function call, calling the value of the name describe_node, with
argument an attribute lookup of op on the name node, and a function call, calling
the value of the name describe_node, with argument an attribute lookup of
operand on the name node.

The function UnaryOp ends here.

Not

A definition of a function named Not, with argument node. The definition is
decorated with the function descriptor. The body of the function is as follows:
A return statement, returning the value of the literal string ‘the unary 'not’
operator’.
The function Not ends here.

USub

A definition of a function named USub, with argument node. The definition
is decorated with the function descriptor. The body of the function is as
follows:

A return statement, returning the value of the literal string ‘the unary negation
operator’.

The function USub ends here.

GeneratorExp

A definition of a function named GeneratorExp, with argument node. The
definition is decorated with the function descriptor. The body of the function
is as follows:

An assignment to the name gen, of the value of an attribute lookup of
generators on the name node, subscripted by a numeric constant with value
0.

A return statement, returning the value of a function call, calling the value
of an attribute lookup of format on the literal string ‘a generator expression,
taking the value of {1, as {} ranges over {}’, with positional arguments a function
call, calling the value of the name describe_node, with argument an attribute
lookup of elt on the name node, a function call, calling the value of the name
describe_node, with argument an attribute lookup of target on the name
gen, and a function call, calling the value of the name describe_node, with
argument an attribute lookup of iter on the name gen.

The function GeneratorExp ends here.

ListComp

A definition of a function named ListComp, with argument node. The defini-
tion is decorated with the function descriptor. The body of the function is as
follows:



ASSERT 35

An assignment to the name gen, of the value of an attribute lookup of
generators on the name node, subscripted by a numeric constant with value
0.

A return statement, returning the value of a function call, calling the value
of an attribute lookup of format on the literal string ‘a list comprehension, taking
the value of {}, as {} ranges over {}’, with positional arguments a function call,
calling the value of the name describe_node, with argument an attribute
lookup of elt on the name node, a function call, calling the value of the name
describe_node, with argument an attribute lookup of target on the name
gen, and a function call, calling the value of the name describe_node, with
argument an attribute lookup of iter on the name gen.

The function ListComp ends here.

Assert

A definition of a function named Assert, with argument node. The definition
is decorated with the function descriptor. The body of the function is as
follows:

A return statement, returning the value of the literal string ”.

The function Assert ends here.

LOAD_CONST

A definition of a function named LOAD_CONST, with positional arguments op,
and codes. The definition is decorated with the function descriptor. The
body of the function is as follows:

A return statement, returning the value of a function call, calling the value
of an attribute lookup of format on the literal string “The computer places {} on
top of the stack.’, with argument a function call, calling the value of the name
describe_value, with positional arguments an attribute lookup of argval
on the name op, and the name codes.

The function LOAD_CONST ends here.

LOAD_NAME

A definition of a function named LOAD_NAME, with positional arguments op,
and codes. The definition is decorated with the function descriptor. The
body of the function is as follows:

A return statement, returning the value of a function call, calling the value of
an attribute lookup of format on the literal string “The computer places the value
associated with the name '{}" on top of the stack.”, with argument an attribute lookup
of argval on the name op.

The function LOAD_NAME ends here.

CALL_FUNCTION

A definition of a function named CALL_FUNCTION, with positional arguments
op, and codes. The definition is decorated with the function descriptor. The
body of the function is as follows:

An if statement, testing a comparison (using the equality operator) of an
attribute lookup of argval on the name op and a numeric constant with value
0. The body of the main branch is as follows:

A return statement, returning the value of the literal string “The computer takes
the top value from the stack and calls it as a function (with no arguments), placing the
return value on top of the stack.’.

The other (‘else’) branch of the i f statement is as follows:



36 CHAPTER 3. ABSTRACT SYNTAX TREE

An if statement, testing a comparison (using the equality operator) of an
attribute lookup of argval on the name op and a numeric constant with value
1. The body of the main branch is as follows:

A return statement, returning the value of a function call, calling the value
of an attribute lookup of format on the literal string “The computer takes the top
value from the stack, along with another value which it calls as a function, using the
original value as an argument, placing the return value on the stack.’, with argument
an attribute lookup of argval on the name op.

The other (‘else’) branch of the i f statement is as follows:

A return statement, returning the value of a function call, calling the value
of an attribute lookup of format on the literal string “The computer takes {}
values from the stack, along with another value which it calls as a function, using the
original values as arguments, placing the return value on the stack.’, with argument a
function call, calling the value of the name describe_number, with argument
an attribute lookup of argval on the name op.

The if statement ends here.

The if statement ends here.

The function CALL_FUNCTION ends here.

POP_TOP

A definition of a function named POP_TOP, with positional arguments op, and
codes. The definition is decorated with the function descriptor. The body of
the function is as follows:

A return statement, returning the value of the literal string “The computer
discards the top value from the stack.’.

The function POP_TOP ends here.

RETURN_VALUE

A definition of a function named RETURN_VALUE, with positional arguments
op, and codes. The definition is decorated with the function descriptor. The
body of the function is as follows:

A return statement, returning the value of the literal string ‘“The computer exits
the current function, returning the top value on the stack.’.

The function RETURN_VALUE ends here.

STORE_NAME

A definition of a function named STORE_NAME, with positional arguments op,
and codes. The definition is decorated with the function descriptor. The
body of the function is as follows:

A return statement, returning the value of a function call, calling the value
of an attribute lookup of format on the literal string “The computer takes the top
value from the stack, and stores it under the name ‘{}'.”, with argument an attribute
lookup of argval on the name op.

The function STORE_NAME ends here.

BINARY_SUBSCR

A definition of a function named BINARY_SUBSCR, with positional arguments
op, and codes. The definition is decorated with the function descriptor. The
body of the function is as follows:

A return statement, returning the value of the literal string “The computer takes
the top two values from the stack and retrieves the value of the second item, subscripted
by the value of the first item.’.

The function BINARY_SUBSCR ends here.



LOAD_ATIR 37

LOAD_ATTR

A definition of a function named LOAD_ATTR, with positional arguments op,
and codes. The definition is decorated with the function descriptor. The
body of the function is as follows:

A return statement, returning the value of a function call, calling the value
of an attribute lookup of format on the literal string “The computer takes the top
value from the stack and retrieves its attribute named '{}', placing it on the stack.”, with
argument an attribute lookup of argval on the name op.

The function LOAD_ATTR ends here.

POP_JUMP_IF_FALSE

A definition of a function named POP_JUMP_IF_FALSE, with positional
arguments op, and codes. The definition is decorated with the function
descriptor. The body of the function is as follows:

A return statement, returning the value of a function call, calling the value
of an attribute lookup of format on the literal string “The computer takes the top
value from the stack, and if it is false-like (e.g. False, None or zero), jumps to offset {}.’,
with argument an attribute lookup of argval on the name op.

The function POP_JUMP_IF_FALSE ends here.

POP_JUMP_IF_TRUE

A definition of a function named POP_JUMP_IF_TRUE, with positional
arguments op, and codes. The definition is decorated with the function
descriptor. The body of the function is as follows:

A return statement, returning the value of a function call, calling the value
of an attribute lookup of format on the literal string “The computer takes the top
value from the stack, and if it is true-like (e.g. True, non-empty or non-zero), jumps to
offset {1.”, with argument an attribute lookup of argval on the name op.

The function POP_JUMP_IF_TRUE ends here.

IMPORT_NAME

A definition of a function named IMPORT_NAME, with positional arguments op,
and codes. The definition is decorated with the function descriptor. The
body of the function is as follows:

A return statement, returning the value of a function call, calling the value
of an attribute lookup of format on the literal string “The computer takes the top
two values from the stack and uses them as the 'fromlist’ and ‘level” of an import for
the module “{}, which is placed on the stack.”, with argument an attribute lookup of
argval on the name op.

The function IMPORT_NAME ends here.

MAKE_FUNCTION

A definition of a function named MAKE_FUNCTION, with positional arguments
op, and codes. The definition is decorated with the function descriptor. The
body of the function is as follows:

An assignment to the name t xt, of the value of the literal string “The computer
takes the top two values from the stack and uses them as the qualified name and code of a
new function, which is placed on the stack.’.

An if statement, testing the bitwise “AND’ operator, with left hand side an
attribute lookup of argval on the name op, and right hand side a numeric
constant with value 8. The body of the main branch is as follows:



38 CHAPTER 3. ABSTRACT SYNTAX TREE

A modifying assignment to the name t xt, using the addition (or concatena-
tion) operator, of the value of the literal string ‘It also takes the next value as a tuple
of cells for free variables, creating a closure.”.

The if statement ends here.

An 1if statement, testing the bitwise “AND’ operator, with left hand side an
attribute lookup of argval on the name op, and right hand side a numeric
constant with value 4. The body of the main branch is as follows:

A modifying assignment to the name txt, using the addition (or concate-
nation) operator, of the value of the literal string ‘It also takes the next value as a
dictionary of function annotations.”.

The i f statement ends here.

An if statement, testing the bitwise “AND’ operator, with left hand side an
attribute lookup of argval on the name op, and right hand side a numeric
constant with value 2. The body of the main branch is as follows:

A modifying assignment to the name txt, using the addition (or concate-
nation) operator, of the value of the literal string ‘It also takes the next value as a
dictionary of keyword arguments.’.

The if statement ends here.

An 1if statement, testing the bitwise “AND’ operator, with left hand side an
attribute lookup of argval on the name op, and right hand side a numeric
constant with value 1. The body of the main branch is as follows:

A modifying assignment to the name t xt, using the addition (or concatena-
tion) operator, of the value of the literal string ‘It also takes the next value as a tuple
of default arquments.’.

The if statement ends here.

A return statement, returning the value of the name txt.

The function MAKE_FUNCTION ends here.

COMPARE_OP

A definition of a function named COMPARE_ OP, with positional arguments op,
and codes. The definition is decorated with the function descriptor. The
body of the function is as follows:

An if statement, testing a comparison (using the equality operator) of an
attribute lookup of argval on the name op and the literal string ‘==". The body
of the main branch is as follows:

A return statement, returning the value of the literal string “The computer takes
the top two values from the stack and compares them for equality, placing the result on
top of the stack.”.

The other (‘else’) branch of the i f statement is as follows:

An if statement, testing a comparison (using the equality operator) of an
attribute lookup of argval on the name op and the literal string “is”. The body
of the main branch is as follows:

A return statement, returning the value of the literal string “The computer takes
the top two values from the stack and compares them for identity, placing the result on
top of the stack.”.

The if statement ends here.

The if statement ends here.

A return statement, returning the value of a function call, calling the value of
an attribute lookup of format on the literal string “The computer takes the top two
values from the stack and compares them using the operator ‘{}', placing the result on
top of the stack.’, with argument an attribute lookup of argval on the name op.

The function COMPARE_OP ends here.

BUILD_MAP

A definition of a function named BUILD_MAP, with positional arguments op,
and codes. The definition is decorated with the function descriptor. The



EXTENDED_ARG 39

body of the function is as follows:

An if statement, testing a comparison (using the equality operator) of an
attribute lookup of argval on the name op and a numeric constant with value
0. The body of the main branch is as follows:

A return statement, returning the value of the literal string “The computer places
an empty dictionary on top of the stack.’.

The i f statement ends here.

A return statement, returning the value of a function call, calling the value
of an attribute lookup of format on the literal string “The computer takes the top
{1 values from the stack, and uses them as key-value pairs in a new dictionary, which
is placed on top of the stack.’, with argument a function call, calling the value of
the name describe_number, with argument the multiplication operator, with
left hand side a numeric constant with value 2, and right hand side an attribute
lookup of argval on the name op.

The function BUILD_MAP ends here.

EXTENDED_ARG

A definition of a function named EXTENDED_ARG, with positional arguments
op, and codes. The definition is decorated with the function descriptor. The
body of the function is as follows:

A return statement, returning the value of the literal string ”.

The function EXTENDED_ARG ends here.

BINARY_ADD

A definition of a function named BINARY_ADD, with positional arguments op,
and codes. The definition is decorated with the function descriptor. The
body of the function is as follows:

A return statement, returning the value of the literal string “The computer takes
the top two values from the stack, adds them together, and places the result on top of the
stack.”.

The function BINARY_ADD ends here.

BINARY_MULTIPLY

A definition of a function named BINARY_MULTIPLY, with positional arguments
op, and codes. The definition is decorated with the function descriptor. The
body of the function is as follows:

A return statement, returning the value of the literal string “The computer takes
the top two values from the stack, multiplies them together, and places the result on top
of the stack.’.

The function BINARY_MULTIPLY ends here.

BINARY_AND

A definition of a function named BINARY_AND, with positional arguments op,
and codes. The definition is decorated with the function descriptor. The
body of the function is as follows:

A return statement, returning the value of the literal string “The computer takes
the top two values from the stack, applies a bitwise "AND’ operator to them, and places
the result on top of the stack.’.

The function BINARY_AND ends here.



40 CHAPTER 3. ABSTRACT SYNTAX TREE

BUILD_LIST

A definition of a function named BUILD_LIST, with positional arguments op,
and codes. The definition is decorated with the function descriptor. The
body of the function is as follows:

An if statement, testing a comparison (using the equality operator) of an
attribute lookup of argval on the name op and a numeric constant with value
0. The body of the main branch is as follows:

A return statement, returning the value of the literal string “The computer places
a new empty list on top of the stack.”.

The other (‘else’) branch of the i f statement is as follows:

An if statement, testing a comparison (using the equality operator) of an
attribute lookup of argval on the name op and a numeric constant with value
1. The body of the main branch is as follows:

A return statement, returning the value of the literal string “The computer takes
the top value from the stack, puts it in a list, and places it on top of the stack.’.

The other (‘else’) branch of the i f statement is as follows:

A return statement, returning the value of a function call, calling the value
of an attribute lookup of format on the literal string “The computer takes the top
{1 values from the stack, puts them in a list, and places it on top of the stack.”, with
argument a function call, calling the value of the name describe_number,
with argument an attribute lookup of argval on the name op.

The i £ statement ends here.
The i £ statement ends here.
The function BUILD_LIST ends here.

BUILD_SLICE

A definition of a function named BUILD_SLICE, with positional arguments op,
and codes. The definition is decorated with the function descriptor. The
body of the function is as follows:

A return statement, returning the value of the literal string “The computer takes
the top two values from the stack, creates a slice object from them, and places it on top of
the stack.”.

The function BUILD_SLICE ends here.

BUILD_TUPLE

A definition of a function named BUILD_TUPLE, with positional arguments op,
and codes. The definition is decorated with the function descriptor. The
body of the function is as follows:

An if statement, testing a comparison (using the equality operator) of an
attribute lookup of argval on the name op and a numeric constant with value
1. The body of the main branch is as follows:

A return statement, returning the value of the literal string “The computer takes
the top value from the stack, creates a tuple from it, and places it on top of the stack.’.

The if statement ends here.

A return statement, returning the value of a function call, calling the value
of an attribute lookup of format on the literal string “The computer takes the top
{1 values from the stack, creates a tuple from them, and places it on top of the stack.’,
with argument a function call, calling the value of the name describe_number,
with argument an attribute lookup of argval on the name op.

The function BUILD_TUPLE ends here.



FOR_ITER 41

FOR_ITER

A definition of a function named FOR_ITER, with positional arguments op, and
codes. The definition is decorated with the function descriptor. The body of
the function is as follows:

A return statement, returning the value of a function call, calling the value of
an attribute lookup of format on the literal string “The computer looks at the top
value on the stack and calls its ‘next()’ method. If it returns a value, it places it on top of
the stack. If not, it removes the top value from the stack and jumps to offset {}.”, with
argument an attribute lookup of argval on the name op.

The function FOR_ITER ends here.

GET_ITER

A definition of a function named GET_ITER, with positional arguments op, and
codes. The definition is decorated with the function descriptor. The body of
the function is as follows:

A return statement, returning the value of the literal string “The computer takes
the top value from the stack, turns it into an iterator (using ‘iter()’), and places the result
on top of the stack.’.

The function GET_ITER ends here.

INPLACE_ADD

A definition of a function named INPLACE_ADD, with positional arguments op,
and codes. The definition is decorated with the function descriptor. The
body of the function is as follows:

A return statement, returning the value of the literal string “The computer takes
the top value from the stack and (in place)adds the second from top value from the stack
to it, placing the result on top of the stack.”.

The function INPLACE_ADD ends here.

JUMP_ABSOLUTE

A definition of a function named JUMP_ABSOLUTE, with positional arguments
op, and codes. The definition is decorated with the function descriptor. The
body of the function is as follows:

A return statement, returning the value of a function call, calling the value of
an attribute lookup of format on the literal string “The computer jumps to offset
{1.’, with argument an attribute lookup of argval on the name op.

The function JUMP_ABSOLUTE ends here.

JUMP_FORWARD

A definition of a function named JUMP_FORWARD, with positional arguments
op, and codes. The definition is decorated with the function descriptor. The
body of the function is as follows:

A return statement, returning the value of a function call, calling the value of
an attribute lookup of format on the literal string “The computer jumps forward to
offset {1.”, with argument an attribute lookup of argval on the name op.

The function JUMP_FORWARD ends here.

LIST_APPEND

A definition of a function named LIST_APPEND, with positional arguments op,
and codes. The definition is decorated with the function descriptor. The
body of the function is as follows:



42 CHAPTER 3. ABSTRACT SYNTAX TREE

A return statement, returning the value of a function call, calling the value
of an attribute lookup of format on the literal string “The computer takes the top
value from the stack and appends it to the list stored {} places from the top of the stack.’,
with argument a function call, calling the value of the name describe_number,
with argument an attribute lookup of argval on the name op.

The function LIST_APPEND ends here.

LOAD_CLOSURE

A definition of a function named LOAD_CLOSURE, with positional arguments
op, and codes. The definition is decorated with the function descriptor. The
body of the function is as follows:

A return statement, returning the value of a function call, calling the value of
an attribute lookup of format on the literal string “The computer loads a reference
to the free variable named ‘{}" and places it on top of the stack.’, with argument an
attribute lookup of argval on the name op.

The function LOAD_CLOSURE ends here.

LOAD_DEREF

A definition of a function named LOAD_DEREF, with positional arguments op,
and codes. The definition is decorated with the function descriptor. The
body of the function is as follows:

A return statement, returning the value of a function call, calling the value of
an attribute lookup of format on the literal string “The computer loads the contents
of the free variable named '{}* and places it on top of the stack.”, with argument an
attribute lookup of argval on the name op.

The function LOAD_DEREEF ends here.

LOAD_FAST

A definition of a function named LOAD_FAST, with positional arguments op,
and codes. The definition is decorated with the function descriptor. The
body of the function is as follows:

A return statement, returning the value of a function call, calling the value of
an attribute lookup of format on the literal string “The computer loads a reference
to the local variable named ‘{}* and places it on top of the stack.’, with argument an
attribute lookup of argval on the name op.

The function LOAD_FAST ends here.

LOAD_GLOBAL

A definition of a function named LOAD_GLOBAL, with positional arguments op,
and codes. The definition is decorated with the function descriptor. The
body of the function is as follows:

A return statement, returning the value of a function call, calling the value of
an attribute lookup of format on the literal string “The computer loads a reference
to the global variable named {}" and places it on top of the stack.’, with argument an
attribute lookup of argval on the name op.

The function LOAD_GLOBAL ends here.

POP_BLOCK

A definition of a function named POP_BLOCK, with positional arguments op,
and codes. The definition is decorated with the function descriptor. The
body of the function is as follows:



SETUP_LOOP 43

A return statement, returning the value of the literal string ‘The computer
removes one block from the block stack.’.
The function POP_BLOCK ends here.

SETUP_LOOP

A definition of a function named SETUP_LOOP, with positional arguments op,
and codes. The definition is decorated with the function descriptor. The
body of the function is as follows:

A return statement, returning the value of a function call, calling the value
of an attribute lookup of format on the literal string “The computer places a new
block for a loop on top of the block stack, extending until offset {}.”, with argument an
attribute lookup of argval on the name op.

The function SETUP_LOOP ends here.

STORE_DEREF

A definition of a function named STORE_DEREF, with positional arguments op,
and codes. The definition is decorated with the function descriptor. The
body of the function is as follows:

A return statement, returning the value of a function call, calling the value
of an attribute lookup of format on the literal string “The computer takes the top
value from the stack and stores it in the free variable named ‘{}.’, with argument an
attribute lookup of argval on the name op.

The function STORE_DEREF ends here.

STORE_FAST

A definition of a function named STORE_FAST, with positional arguments op,
and codes. The definition is decorated with the function descriptor. The
body of the function is as follows:

A return statement, returning the value of a function call, calling the value
of an attribute lookup of format on the literal string “The computer takes the top
value from the stack and stores it in the local variable named ‘{}’.”, with argument an
attribute lookup of argval on the name op.

The function STORE_FAST ends here.

STORE_SUBSCR

A definition of a function named STORE_SUBSCR, with positional arguments
op, and codes. The definition is decorated with the function descriptor. The
body of the function is as follows:

A return statement, returning the value of the literal string “The computer takes
the top value from the stack, uses it to index into the next-from-top value, and stores the
value below that in that location.’.

The function STORE_SUBSCR ends here.

UNPACK_SEQUENCE

A definition of a function named UNPACK_SEQUENCE, with positional arguments
op, and codes. The definition is decorated with the function descriptor. The
body of the function is as follows:

A return statement, returning the value of a function call, calling the value
of an attribute lookup of format on the literal string “The computer takes the top
value from the stack, unpacks it into {} values, then places them each on top of the stack.’,
with argument a function call, calling the value of the name describe_number,
with argument an attribute lookup of argval on the name op.



44 CHAPTER 3. ABSTRACT SYNTAX TREE

The function UNPACK_SEQUENCE ends here.

YIELD_VALUE

A definition of a function named YIELD_VALUE, with positional arguments op,
and codes. The definition is decorated with the function descriptor. The
body of the function is as follows:

A return statement, returning the value of the literal string “The computer takes
the top value from the stack and yields it from the current generator.”.

The function YIELD_VALUE ends here.

CALL_FUNCTION_KW

A definition of a function named CALL_FUNCTION_KW, with positional
arguments op, and codes. The definition is decorated with the function
descriptor. The body of the function is as follows:

A return statement, returning the value of a function call, calling the value
of an attribute lookup of format on the literal string “The computer takes the top
value from the stack and interprets it as a tuple of keyword names. It then takes values
from the top of the stack as corresponding values, followed by positional arquments up to
a total of {} values (both keyword and positional). Then it takes the next value from the
top of the stack and calls it as a function with these arguments, placing the return value
on top of the stack.’, with argument an attribute lookup of argval on the name
op.
The function CALL_FUNCTION_KW ends here.

DUP_TOP

A definition of a function named DUP_TOP, with positional arguments op, and
codes. The definition is decorated with the function descriptor. The body of
the function is as follows:

A return statement, returning the value of the literal string “The computer
duplicates the top value on the stack, placing the new copy on top of the stack.’.

The function DUP_TOP ends here.

ROT_TWO

A definition of a function named ROT_TWO, with positional arguments op, and
codes. The definition is decorated with the function descriptor. The body of
the function is as follows:
A return statement, returning the value of the literal string “The computer takes
the top two values from the stack, swaps them, and replaces them on top of the stack.’.
The function ROT_TWO ends here.

ROT_THREE

A definition of a function named ROT_THREE, with positional arguments op,
and codes. The definition is decorated with the function descriptor. The
body of the function is as follows:

A return statement, returning the value of the literal string “The computer takes
the top three values from the stack, rotates them so that the top value is now on the
bottom, and replaces them on top of the stack.”.

The function ROT_THREE ends here.



UNARY_NEGATIVE 45

UNARY_NEGATIVE

A definition of a function named UNARY_NEGATIVE, with positional arguments
op, and codes. The definition is decorated with the function descriptor. The
body of the function is as follows:

A return statement, returning the value of the literal string “The computer takes
the top value from the stack, negates it, and places the result on top of the stack.’.

The function UNARY_NEGATIVE ends here.

JUMP_IF_FALSE_OR_POP

A definition of a function named JUMP_IF_FALSE_OR_POP, with positional
arguments op, and codes. The definition is decorated with the function
descriptor. The body of the function is as follows:

A return statement, returning the value of the literal string “The computer looks
at the top value on the stack. If it is false-like (e.g. False, None or zero), it jumps to offset
{1. Otherwise it removes the top value from the stack.”.

The function JUMP_IF_FALSE_OR_POP ends here.

An if statement, testing a comparison (using the equality operator) of the
name __name___ and the literal string *__main__’". The body of the main branch
is as follows:

An assignment to the name out file, of the value of an attribute lookup of
argv on the name sys, subscripted by a numeric constant with value 1.

An assignment to the name filename, of the value of thename __file .

An if statement, testing a comparison (using the ‘greater than” operator) of
a function call, calling the value of the name len, with argument an attribute
lookup of argv on the name sys and a numeric constant with value 2. The body
of the main branch is as follows:

An assignment to the name £ilename, of the value of an attribute lookup of
argv on the name sys, subscripted by a numeric constant with value 2.

The i f statement ends here.

An assignment to the name £, of the value of a function call, calling the value
of the name open, with positional arguments the name out £ile, and the literal
string ‘w’.

A bare expression with value a function call, calling the value of an attribute
lookup of write on the name f, with argument a function call, calling the value
of the name describe_file, with argument the name filename.

A bare expression with value a function call, calling the value of an attribute
lookup of close on the name £ with no positional arguments.

The if statement ends here.






Chapter 4

Bytecode

describe.py

The computer places the integer constant zero on top of the stack. The computer
places the constant None on top of the stack. The computer takes the top two
values from the stack and uses them as the ‘fromlist” and ‘level” of an import for
the module ast, which is placed on the stack. The computer takes the top value
from the stack, and stores it under the name ast.

The computer places the integer constant zero on top of the stack. The
computer places the constant None on top of the stack. The computer takes the
top two values from the stack and uses them as the ‘fromlist’ and ‘level” of an
import for the module dis, which is placed on the stack. The computer takes
the top value from the stack, and stores it under the name dis.

The computer places the integer constant zero on top of the stack. The
computer places the constant None on top of the stack. The computer takes the
top two values from the stack and uses them as the ‘fromlist’ and ‘level” of an
import for the module re, which is placed on the stack. The computer takes the
top value from the stack, and stores it under the name re.

The computer places the integer constant zero on top of the stack. The
computer places the constant None on top of the stack. The computer takes the
top two values from the stack and uses them as the ‘fromlist’ and ‘level” of an
import for the module sys, which is placed on the stack. The computer takes
the top value from the stack, and stores it under the name sys.

The computer places the integer constant zero on top of the stack. The
computer places the constant None on top of the stack. The computer takes the
top two values from the stack and uses them as the ‘fromlist’ and ‘level” of an
import for the module types, which is placed on the stack. The computer takes
the top value from the stack, and stores it under the name types.

The computer places the literal string “The Program Which Generates This Book’
on top of the stack. The computer takes the top value from the stack, and stores
it under the name title.

The computer places the literal string ‘Martin O’Leary’ on top of the stack.
The computer takes the top value from the stack, and stores it under the name
author.

The computer places the literal string “\nThis book describes a computer
program which, when executed, generates this\nbook. The program is described
in three ways:\n\nFirst, a source code listing is given, in the Python program-
ming language. This\nis the form of the program which was typed by the author,
in text form.\n\nSecond, an *abstract syntax tree* is described, which is the
computer’s\ninterpretation of the textual source code in terms of the language
constructs\navailable in the Python programming language \n\nFinally, the program
is described in terms of *bytecode®, the computer’s internal\nrepresentation of the source
code, a sequence of unambiguous instructions which\ncan be executed to perform the
computation described by the program.\n\nThe descriptions given in this book are

47



48 CHAPTER 4. BYTECODE

generated by the program it describes, in\nconjunction with a Python interpreter,
starting from the source code form. Both \nthe abstract syntax tree and the bytecode
representation are somewhat unstable.\nDifferent versions of the Python interpreter
may yield different abstract syntax\ntrees and different bytecode representations of the
same program. This book was\ngenerated using ‘Python {}’.\n’ on top of the stack.
The computer takes the top value from the stack and retrieves its attribute named
format, placing it on the stack. The computer places the value associated with
the name sys on top of the stack. The computer takes the top value from the
stack and retrieves its attribute named version, placing it on the stack. The
computer takes the top value from the stack, along with another value which it
calls as a function, using the original value as an argument, placing the return
value on the stack. The computer takes the top value from the stack, and stores
it under the name preface.

The computer places the code object described under title_block on top of the
stack. The computer places the literal string ‘title_block” on top of the stack. The
computer takes the top two values from the stack and uses them as the qualified
name and code of a new function, which is placed on the stack. The computer
takes the top value from the stack, and stores it under the name title_block.

The computer places the code object described under describe_op on top
of the stack. The computer places the literal string ‘describe_op” on top of the
stack. The computer takes the top two values from the stack and uses them as
the qualified name and code of a new function, which is placed on the stack.
The computer takes the top value from the stack, and stores it under the name
describe_op.

The computer places the code object described under describe_file on top
of the stack. The computer places the literal string ‘describe_file’ on top of the
stack. The computer takes the top two values from the stack and uses them as
the qualified name and code of a new function, which is placed on the stack.
The computer takes the top value from the stack, and stores it under the name
describe_file.

The computer places the code object described under describe_number on
top of the stack. The computer places the literal string ‘describe_number” on top of
the stack. The computer takes the top two values from the stack and uses them
as the qualified name and code of a new function, which is placed on the stack.
The computer takes the top value from the stack, and stores it under the name
describe_number.

The computer places the code object described under as_list on top of the
stack. The computer places the literal string ‘as_list" on top of the stack. The
computer takes the top two values from the stack and uses them as the qualified
name and code of a new function, which is placed on the stack. The computer
takes the top value from the stack, and stores it under the name as_1list.

The computer places the code object described under escape_string on top
of the stack. The computer places the literal string ‘escape_string” on top of the
stack. The computer takes the top two values from the stack and uses them as
the qualified name and code of a new function, which is placed on the stack.
The computer takes the top value from the stack, and stores it under the name
escape_string.

The computer places the code object described under describe_value on top
of the stack. The computer places the literal string ‘describe_value” on top of the
stack. The computer takes the top two values from the stack and uses them as
the qualified name and code of a new function, which is placed on the stack.
The computer takes the top value from the stack, and stores it under the name
describe_value.

The computer places the code object described under describe_node on top
of the stack. The computer places the literal string ‘describe_node’ on top of the
stack. The computer takes the top two values from the stack and uses them as
the qualified name and code of a new function, which is placed on the stack.
The computer takes the top value from the stack, and stores it under the name
describe_node.



DESCRIBE.PY 49

The computer places an empty dictionary on top of the stack. The computer
takes the top value from the stack, and stores it under the name descriptors.

The computer places the code object described under descriptor on top of the
stack. The computer places the literal string ‘descriptor” on top of the stack. The
computer takes the top two values from the stack and uses them as the qualified
name and code of a new function, which is placed on the stack. The computer
takes the top value from the stack, and stores it under the name descriptor.

The computer places the value associated with the name descriptor on
top of the stack. The computer places the code object described under Module
on top of the stack. The computer places the literal string ‘Module’ on top of the
stack. The computer takes the top two values from the stack and uses them as
the qualified name and code of a new function, which is placed on the stack. The
computer takes the top value from the stack, along with another value which it
calls as a function, using the original value as an argument, placing the return
value on the stack. The computer takes the top value from the stack, and stores
it under the name Module.

The computer places the value associated with the name descriptor on
top of the stack. The computer places the code object described under Import
on top of the stack. The computer places the literal string ‘Import’ on top of the
stack. The computer takes the top two values from the stack and uses them as
the qualified name and code of a new function, which is placed on the stack. The
computer takes the top value from the stack, along with another value which it
calls as a function, using the original value as an argument, placing the return
value on the stack. The computer takes the top value from the stack, and stores
it under the name Import.

The computer places the value associated with the name descriptor on
top of the stack. The computer places the code object described under Assign
on top of the stack. The computer places the literal string “Assign’ on top of the
stack. The computer takes the top two values from the stack and uses them as
the qualified name and code of a new function, which is placed on the stack. The
computer takes the top value from the stack, along with another value which it
calls as a function, using the original value as an argument, placing the return
value on the stack. The computer takes the top value from the stack, and stores
it under the name Assign.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under AugAssign on
top of the stack. The computer places the literal string ‘AugAssign” on top of the
stack. The computer takes the top two values from the stack and uses them as
the qualified name and code of a new function, which is placed on the stack. The
computer takes the top value from the stack, along with another value which it
calls as a function, using the original value as an argument, placing the return
value on the stack. The computer takes the top value from the stack, and stores
it under the name AugAssign.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under Add on top of
the stack. The computer places the literal string “Add” on top of the stack. The
computer takes the top two values from the stack and uses them as the qualified
name and code of a new function, which is placed on the stack. The computer
takes the top value from the stack, along with another value which it calls as a
function, using the original value as an argument, placing the return value on
the stack. The computer takes the top value from the stack, and stores it under
the name Add.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under Mult on top of
the stack. The computer places the literal string ‘Mult’ on top of the stack. The
computer takes the top two values from the stack and uses them as the qualified
name and code of a new function, which is placed on the stack. The computer
takes the top value from the stack, along with another value which it calls as a
function, using the original value as an argument, placing the return value on



50 CHAPTER 4. BYTECODE

the stack. The computer takes the top value from the stack, and stores it under
the name Mult.

The computer places the value associated with the name descriptor on
top of the stack. The computer places the code object described under BitAnd
on top of the stack. The computer places the literal string ‘BitAnd” on top of the
stack. The computer takes the top two values from the stack and uses them as
the qualified name and code of a new function, which is placed on the stack. The
computer takes the top value from the stack, along with another value which it
calls as a function, using the original value as an argument, placing the return
value on the stack. The computer takes the top value from the stack, and stores
it under the name BitAnd.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under Subscript on
top of the stack. The computer places the literal string ‘Subscript” on top of the
stack. The computer takes the top two values from the stack and uses them as
the qualified name and code of a new function, which is placed on the stack. The
computer takes the top value from the stack, along with another value which it
calls as a function, using the original value as an argument, placing the return
value on the stack. The computer takes the top value from the stack, and stores
it under the name Subscript.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under Index on top
of the stack. The computer places the literal string ‘Index” on top of the stack. The
computer takes the top two values from the stack and uses them as the qualified
name and code of a new function, which is placed on the stack. The computer
takes the top value from the stack, along with another value which it calls as a
function, using the original value as an argument, placing the return value on
the stack. The computer takes the top value from the stack, and stores it under
the name Index.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under Slice on top of
the stack. The computer places the literal string “Slice” on top of the stack. The
computer takes the top two values from the stack and uses them as the qualified
name and code of a new function, which is placed on the stack. The computer
takes the top value from the stack, along with another value which it calls as a
function, using the original value as an argument, placing the return value on
the stack. The computer takes the top value from the stack, and stores it under
the name Slice.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under For on top of
the stack. The computer places the literal string ‘For” on top of the stack. The
computer takes the top two values from the stack and uses them as the qualified
name and code of a new function, which is placed on the stack. The computer
takes the top value from the stack, along with another value which it calls as a
function, using the original value as an argument, placing the return value on
the stack. The computer takes the top value from the stack, and stores it under
the name For.

The computer places the value associated with the name descriptor on
top of the stack. The computer places the code object described under While
on top of the stack. The computer places the literal string “‘While” on top of the
stack. The computer takes the top two values from the stack and uses them as
the qualified name and code of a new function, which is placed on the stack. The
computer takes the top value from the stack, along with another value which it
calls as a function, using the original value as an argument, placing the return
value on the stack. The computer takes the top value from the stack, and stores
it under the name While.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under Continue on
top of the stack. The computer places the literal string ‘Continue’ on top of the
stack. The computer takes the top two values from the stack and uses them as



DESCRIBE.PY 51

the qualified name and code of a new function, which is placed on the stack. The
computer takes the top value from the stack, along with another value which it
calls as a function, using the original value as an argument, placing the return
value on the stack. The computer takes the top value from the stack, and stores
it under the name Cont inue.

The computer places the value associated with the name descriptor on
top of the stack. The computer places the code object described under Name
on top of the stack. The computer places the literal string ‘Name” on top of the
stack. The computer takes the top two values from the stack and uses them as
the qualified name and code of a new function, which is placed on the stack. The
computer takes the top value from the stack, along with another value which it
calls as a function, using the original value as an argument, placing the return
value on the stack. The computer takes the top value from the stack, and stores
it under the name Name.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under NameConstant
on top of the stack. The computer places the literal string ‘NameConstant’ on top
of the stack. The computer takes the top two values from the stack and uses
them as the qualified name and code of a new function, which is placed on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack. The computer takes the top value from the stack, and
stores it under the name NameConstant.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under List on top of
the stack. The computer places the literal string ‘List” on top of the stack. The
computer takes the top two values from the stack and uses them as the qualified
name and code of a new function, which is placed on the stack. The computer
takes the top value from the stack, along with another value which it calls as a
function, using the original value as an argument, placing the return value on
the stack. The computer takes the top value from the stack, and stores it under
the name List.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under Tuple on top
of the stack. The computer places the literal string “Tuple” on top of the stack. The
computer takes the top two values from the stack and uses them as the qualified
name and code of a new function, which is placed on the stack. The computer
takes the top value from the stack, along with another value which it calls as a
function, using the original value as an argument, placing the return value on
the stack. The computer takes the top value from the stack, and stores it under
the name Tuple.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under Dict on top of
the stack. The computer places the literal string ‘Dict” on top of the stack. The
computer takes the top two values from the stack and uses them as the qualified
name and code of a new function, which is placed on the stack. The computer
takes the top value from the stack, along with another value which it calls as a
function, using the original value as an argument, placing the return value on
the stack. The computer takes the top value from the stack, and stores it under
the name Dict.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under FunctionDef
on top of the stack. The computer places the literal string ‘FunctionDef” on top
of the stack. The computer takes the top two values from the stack and uses
them as the qualified name and code of a new function, which is placed on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack. The computer takes the top value from the stack, and
stores it under the name FunctionDef.



52 CHAPTER 4. BYTECODE

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under Call on top of
the stack. The computer places the literal string ‘Call” on top of the stack. The
computer takes the top two values from the stack and uses them as the qualified
name and code of a new function, which is placed on the stack. The computer
takes the top value from the stack, along with another value which it calls as a
function, using the original value as an argument, placing the return value on
the stack. The computer takes the top value from the stack, and stores it under
the name Call.

The computer places the value associated with the name descriptor on
top of the stack. The computer places the code object described under Return
on top of the stack. The computer places the literal string ‘Return’ on top of the
stack. The computer takes the top two values from the stack and uses them as
the qualified name and code of a new function, which is placed on the stack. The
computer takes the top value from the stack, along with another value which it
calls as a function, using the original value as an argument, placing the return
value on the stack. The computer takes the top value from the stack, and stores
it under the name Return.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under Str on top of
the stack. The computer places the literal string ‘Str” on top of the stack. The
computer takes the top two values from the stack and uses them as the qualified
name and code of a new function, which is placed on the stack. The computer
takes the top value from the stack, along with another value which it calls as a
function, using the original value as an argument, placing the return value on
the stack. The computer takes the top value from the stack, and stores it under
the name Str.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under Attribute on
top of the stack. The computer places the literal string ‘Attribute” on top of the
stack. The computer takes the top two values from the stack and uses them as
the qualified name and code of a new function, which is placed on the stack. The
computer takes the top value from the stack, along with another value which it
calls as a function, using the original value as an argument, placing the return
value on the stack. The computer takes the top value from the stack, and stores
it under the name Attribute.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under Expr on top of
the stack. The computer places the literal string ‘Expr” on top of the stack. The
computer takes the top two values from the stack and uses them as the qualified
name and code of a new function, which is placed on the stack. The computer
takes the top value from the stack, along with another value which it calls as a
function, using the original value as an argument, placing the return value on
the stack. The computer takes the top value from the stack, and stores it under
the name Expr.

The computer places the value associated with the name descriptor on
top of the stack. The computer places the code object described under BinOp
on top of the stack. The computer places the literal string ‘BinOp” on top of the
stack. The computer takes the top two values from the stack and uses them as
the qualified name and code of a new function, which is placed on the stack. The
computer takes the top value from the stack, along with another value which it
calls as a function, using the original value as an argument, placing the return
value on the stack. The computer takes the top value from the stack, and stores
it under the name BinOp.

The computer places the value associated with the name descriptor on
top of the stack. The computer places the code object described under If on top
of the stack. The computer places the literal string ‘If” on top of the stack. The
computer takes the top two values from the stack and uses them as the qualified
name and code of a new function, which is placed on the stack. The computer
takes the top value from the stack, along with another value which it calls as a



DESCRIBE.PY 53

function, using the original value as an argument, placing the return value on
the stack. The computer takes the top value from the stack, and stores it under
the name If.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under Num on top
of the stack. The computer places the literal string ‘Num’ on top of the stack. The
computer takes the top two values from the stack and uses them as the qualified
name and code of a new function, which is placed on the stack. The computer
takes the top value from the stack, along with another value which it calls as a
function, using the original value as an argument, placing the return value on
the stack. The computer takes the top value from the stack, and stores it under
the name Num.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under Compare on
top of the stack. The computer places the literal string ‘Compare” on top of the
stack. The computer takes the top two values from the stack and uses them as
the qualified name and code of a new function, which is placed on the stack. The
computer takes the top value from the stack, along with another value which it
calls as a function, using the original value as an argument, placing the return
value on the stack. The computer takes the top value from the stack, and stores
it under the name Compare.

The computer places the value associated with the name descriptor on
top of the stack. The computer places the code object described under Eq on top
of the stack. The computer places the literal string ‘Eq” on top of the stack. The
computer takes the top two values from the stack and uses them as the qualified
name and code of a new function, which is placed on the stack. The computer
takes the top value from the stack, along with another value which it calls as a
function, using the original value as an argument, placing the return value on
the stack. The computer takes the top value from the stack, and stores it under
the name Eq.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under GtE on top of
the stack. The computer places the literal string ‘GtE” on top of the stack. The
computer takes the top two values from the stack and uses them as the qualified
name and code of a new function, which is placed on the stack. The computer
takes the top value from the stack, along with another value which it calls as a
function, using the original value as an argument, placing the return value on
the stack. The computer takes the top value from the stack, and stores it under
the name GtE.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under LtE on top of
the stack. The computer places the literal string ‘LtE” on top of the stack. The
computer takes the top two values from the stack and uses them as the qualified
name and code of a new function, which is placed on the stack. The computer
takes the top value from the stack, along with another value which it calls as a
function, using the original value as an argument, placing the return value on
the stack. The computer takes the top value from the stack, and stores it under
the name LtE.

The computer places the value associated with the name descriptor on
top of the stack. The computer places the code object described under Gt on top
of the stack. The computer places the literal string ‘Gt’ on top of the stack. The
computer takes the top two values from the stack and uses them as the qualified
name and code of a new function, which is placed on the stack. The computer
takes the top value from the stack, along with another value which it calls as a
function, using the original value as an argument, placing the return value on
the stack. The computer takes the top value from the stack, and stores it under
the name Gt.

The computer places the value associated with the name descriptor on
top of the stack. The computer places the code object described under Is on top
of the stack. The computer places the literal string ‘Is” on top of the stack. The



54 CHAPTER 4. BYTECODE

computer takes the top two values from the stack and uses them as the qualified
name and code of a new function, which is placed on the stack. The computer
takes the top value from the stack, along with another value which it calls as a
function, using the original value as an argument, placing the return value on
the stack. The computer takes the top value from the stack, and stores it under
the name Is.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under UnaryOp on
top of the stack. The computer places the literal string ‘UnaryOp” on top of the
stack. The computer takes the top two values from the stack and uses them as
the qualified name and code of a new function, which is placed on the stack. The
computer takes the top value from the stack, along with another value which it
calls as a function, using the original value as an argument, placing the return
value on the stack. The computer takes the top value from the stack, and stores
it under the name UnaryOp.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under Not on top of
the stack. The computer places the literal string ‘Not” on top of the stack. The
computer takes the top two values from the stack and uses them as the qualified
name and code of a new function, which is placed on the stack. The computer
takes the top value from the stack, along with another value which it calls as a
function, using the original value as an argument, placing the return value on
the stack. The computer takes the top value from the stack, and stores it under
the name Not.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under USub on top
of the stack. The computer places the literal string ‘USub’ on top of the stack. The
computer takes the top two values from the stack and uses them as the qualified
name and code of a new function, which is placed on the stack. The computer
takes the top value from the stack, along with another value which it calls as a
function, using the original value as an argument, placing the return value on
the stack. The computer takes the top value from the stack, and stores it under
the name USub.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under GeneratorExp
on top of the stack. The computer places the literal string ‘GeneratorExp’ on top
of the stack. The computer takes the top two values from the stack and uses
them as the qualified name and code of a new function, which is placed on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack. The computer takes the top value from the stack, and
stores it under the name GeneratorExp.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under ListComp on
top of the stack. The computer places the literal string ‘ListComp” on top of the
stack. The computer takes the top two values from the stack and uses them as
the qualified name and code of a new function, which is placed on the stack. The
computer takes the top value from the stack, along with another value which it
calls as a function, using the original value as an argument, placing the return
value on the stack. The computer takes the top value from the stack, and stores
it under the name ListComp.

The computer places the value associated with the name descriptor on
top of the stack. The computer places the code object described under Assert
on top of the stack. The computer places the literal string ‘Assert” on top of the
stack. The computer takes the top two values from the stack and uses them as
the qualified name and code of a new function, which is placed on the stack. The
computer takes the top value from the stack, along with another value which it
calls as a function, using the original value as an argument, placing the return
value on the stack. The computer takes the top value from the stack, and stores
it under the name Assert.



DESCRIBE.PY 55

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under LOAD_CONST
on top of the stack. The computer places the literal string 'TLOAD_CONST’ on
top of the stack. The computer takes the top two values from the stack and uses
them as the qualified name and code of a new function, which is placed on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack. The computer takes the top value from the stack, and
stores it under the name LOAD_CONST.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under LOAD_NAME
on top of the stack. The computer places the literal string ‘LOAD_NAME’ on
top of the stack. The computer takes the top two values from the stack and uses
them as the qualified name and code of a new function, which is placed on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack. The computer takes the top value from the stack, and
stores it under the name LOAD_NAME.

The computer places the value associated with the name descriptor
on top of the stack. The computer places the code object described under
CALL_FUNCTION on top of the stack. The computer places the literal string
‘CALL_FUNCTION’ on top of the stack. The computer takes the top two values
from the stack and uses them as the qualified name and code of a new function,
which is placed on the stack. The computer takes the top value from the stack,
along with another value which it calls as a function, using the original value as
an argument, placing the return value on the stack. The computer takes the top
value from the stack, and stores it under the name CALL_FUNCTION.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under POP_TOP on
top of the stack. The computer places the literal string ‘POP_TOP’ on top of the
stack. The computer takes the top two values from the stack and uses them as
the qualified name and code of a new function, which is placed on the stack. The
computer takes the top value from the stack, along with another value which it
calls as a function, using the original value as an argument, placing the return
value on the stack. The computer takes the top value from the stack, and stores
it under the name POP_TOP.

The computer places the value associated with the name descriptor on
top of the stack. The computer places the code object described under RE-
TURN_VALUE on top of the stack. The computer places the literal string ‘RE-
TURN_VALUE’ on top of the stack. The computer takes the top two values from
the stack and uses them as the qualified name and code of a new function, which
is placed on the stack. The computer takes the top value from the stack, along
with another value which it calls as a function, using the original value as an
argument, placing the return value on the stack. The computer takes the top
value from the stack, and stores it under the name RETURN_VALUE.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under STORE_NAME
on top of the stack. The computer places the literal string ‘STORE_NAME’ on
top of the stack. The computer takes the top two values from the stack and uses
them as the qualified name and code of a new function, which is placed on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack. The computer takes the top value from the stack, and
stores it under the name STORE_NAME.

The computer places the value associated with the name descriptor on
top of the stack. The computer places the code object described under BI-
NARY_SUBSCR on top of the stack. The computer places the literal string
‘BINARY_SUBSCR’ on top of the stack. The computer takes the top two values
from the stack and uses them as the qualified name and code of a new function,
which is placed on the stack. The computer takes the top value from the stack,



56 CHAPTER 4. BYTECODE

along with another value which it calls as a function, using the original value as
an argument, placing the return value on the stack. The computer takes the top
value from the stack, and stores it under the name BINARY_SUBSCR.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under LOAD_ATTR
on top of the stack. The computer places the literal string ‘LOAD_ATTR’ on top
of the stack. The computer takes the top two values from the stack and uses
them as the qualified name and code of a new function, which is placed on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack. The computer takes the top value from the stack, and
stores it under the name LOAD_ATTR.

The computer places the value associated with the name descriptor
on top of the stack. The computer places the code object described under
POP_JUMP_IF_FALSE on top of the stack. The computer places the literal
string ‘POP_JUMP_IF_FALSE’ on top of the stack. The computer takes the top
two values from the stack and uses them as the qualified name and code of a
new function, which is placed on the stack. The computer takes the top value
from the stack, along with another value which it calls as a function, using
the original value as an argument, placing the return value on the stack. The
computer takes the top value from the stack, and stores it under the name
POP_JUMP_TIF_FALSE.

The computer places the value associated with the name descriptor
on top of the stack. The computer places the code object described under
POP_JUMP_IF_TRUE on top of the stack. The computer places the literal string
‘POP_JUMP_IF_TRUE’ on top of the stack. The computer takes the top two
values from the stack and uses them as the qualified name and code of a new
function, which is placed on the stack. The computer takes the top value from
the stack, along with another value which it calls as a function, using the original
value as an argument, placing the return value on the stack. The computer takes
the top value from the stack, and stores it under the name POP_JUMP_IF_TRUE.

The computer places the value associated with the name descriptor on
top of the stack. The computer places the code object described under IM-
PORT_NAME on top of the stack. The computer places the literal string ‘IM-
PORT_NAME’ on top of the stack. The computer takes the top two values from
the stack and uses them as the qualified name and code of a new function, which
is placed on the stack. The computer takes the top value from the stack, along
with another value which it calls as a function, using the original value as an
argument, placing the return value on the stack. The computer takes the top
value from the stack, and stores it under the name IMPORT_NAME.

The computer places the value associated with the name descriptor
on top of the stack. The computer places the code object described under
MAKE_FUNCTION on top of the stack. The computer places the literal string
‘MAKE_FUNCTION' on top of the stack. The computer takes the top two values
from the stack and uses them as the qualified name and code of a new function,
which is placed on the stack. The computer takes the top value from the stack,
along with another value which it calls as a function, using the original value as
an argument, placing the return value on the stack. The computer takes the top
value from the stack, and stores it under the name MAKE_FUNCTION.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under COMPARE_OP
on top of the stack. The computer places the literal string ‘COMPARE_OP’ on
top of the stack. The computer takes the top two values from the stack and uses
them as the qualified name and code of a new function, which is placed on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack. The computer takes the top value from the stack, and
stores it under the name COMPARE_OP.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under BUILD_MAP



DESCRIBE.PY 57

on top of the stack. The computer places the literal string ‘BUILD_MAP’ on top
of the stack. The computer takes the top two values from the stack and uses
them as the qualified name and code of a new function, which is placed on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack. The computer takes the top value from the stack, and
stores it under the name BUILD_MAP.

The computer places the value associated with the name descriptor on
top of the stack. The computer places the code object described under EX-
TENDED_ARG on top of the stack. The computer places the literal string ‘EX-
TENDED_ARG’ on top of the stack. The computer takes the top two values from
the stack and uses them as the qualified name and code of a new function, which
is placed on the stack. The computer takes the top value from the stack, along
with another value which it calls as a function, using the original value as an
argument, placing the return value on the stack. The computer takes the top
value from the stack, and stores it under the name EXTENDED_ARG.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under BINARY_ADD
on top of the stack. The computer places the literal string ‘BINARY_ADD’ on
top of the stack. The computer takes the top two values from the stack and uses
them as the qualified name and code of a new function, which is placed on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack. The computer takes the top value from the stack, and
stores it under the name BINARY_ADD.

The computer places the value associated with the name descriptor on
top of the stack. The computer places the code object described under BI-
NARY_MULTIPLY on top of the stack. The computer places the literal string
‘BINARY_MULTIPLY’ on top of the stack. The computer takes the top two values
from the stack and uses them as the qualified name and code of a new function,
which is placed on the stack. The computer takes the top value from the stack,
along with another value which it calls as a function, using the original value as
an argument, placing the return value on the stack. The computer takes the top
value from the stack, and stores it under the name BINARY_MULTIPLY.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under BINARY_AND
on top of the stack. The computer places the literal string ‘BINARY_AND’ on
top of the stack. The computer takes the top two values from the stack and uses
them as the qualified name and code of a new function, which is placed on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack. The computer takes the top value from the stack, and
stores it under the name BINARY_AND.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under BUILD_LIST
on top of the stack. The computer places the literal string ‘BUILD_LIST’ on top
of the stack. The computer takes the top two values from the stack and uses
them as the qualified name and code of a new function, which is placed on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack. The computer takes the top value from the stack, and
stores it under the name BUILD_LIST.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under BUILD_SLICE
on top of the stack. The computer places the literal string ‘BUILD_SLICE’ on
top of the stack. The computer takes the top two values from the stack and uses
them as the qualified name and code of a new function, which is placed on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the



58 CHAPTER 4. BYTECODE

return value on the stack. The computer takes the top value from the stack, and
stores it under the name BUILD_SLICE.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under BUILD_TUPLE
on top of the stack. The computer places the literal string ‘BUILD_TUPLE’ on
top of the stack. The computer takes the top two values from the stack and uses
them as the qualified name and code of a new function, which is placed on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack. The computer takes the top value from the stack, and
stores it under the name BUILD_TUPLE.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under FOR_ITER on
top of the stack. The computer places the literal string ‘FOR_ITER’ on top of the
stack. The computer takes the top two values from the stack and uses them as
the qualified name and code of a new function, which is placed on the stack. The
computer takes the top value from the stack, along with another value which it
calls as a function, using the original value as an argument, placing the return
value on the stack. The computer takes the top value from the stack, and stores
it under the name FOR_ITER.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under GET_ITER on
top of the stack. The computer places the literal string ‘GET_ITER on top of the
stack. The computer takes the top two values from the stack and uses them as
the qualified name and code of a new function, which is placed on the stack. The
computer takes the top value from the stack, along with another value which it
calls as a function, using the original value as an argument, placing the return
value on the stack. The computer takes the top value from the stack, and stores
it under the name GET_ITER.

The computer places the value associated with the name descriptor on
top of the stack. The computer places the code object described under IN-
PLACE_ADD on top of the stack. The computer places the literal string ‘IN-
PLACE_ADD’ on top of the stack. The computer takes the top two values from
the stack and uses them as the qualified name and code of a new function, which
is placed on the stack. The computer takes the top value from the stack, along
with another value which it calls as a function, using the original value as an
argument, placing the return value on the stack. The computer takes the top
value from the stack, and stores it under the name INPLACE_ADD.

The computer places the value associated with the name descriptor
on top of the stack. The computer places the code object described under
JUMP_ABSOLUTE on top of the stack. The computer places the literal string
JUMP_ABSOLUTE’ on top of the stack. The computer takes the top two values
from the stack and uses them as the qualified name and code of a new function,
which is placed on the stack. The computer takes the top value from the stack,
along with another value which it calls as a function, using the original value as
an argument, placing the return value on the stack. The computer takes the top
value from the stack, and stores it under the name JUMP_ABSOLUTE.

The computer places the value associated with the name descriptor
on top of the stack. The computer places the code object described under
JUMP_FORWARD on top of the stack. The computer places the literal string
JUMP_FORWARD’ on top of the stack. The computer takes the top two values
from the stack and uses them as the qualified name and code of a new function,
which is placed on the stack. The computer takes the top value from the stack,
along with another value which it calls as a function, using the original value as
an argument, placing the return value on the stack. The computer takes the top
value from the stack, and stores it under the name JUMP_FORWARD.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under LIST_APPEND
on top of the stack. The computer places the literal string ‘LIST_APPEND’ on
top of the stack. The computer takes the top two values from the stack and uses



DESCRIBE.PY 59

them as the qualified name and code of a new function, which is placed on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack. The computer takes the top value from the stack, and
stores it under the name LIST_APPEND.

The computer places the value associated with the name descriptor
on top of the stack. The computer places the code object described under
LOAD_CLOSURE on top of the stack. The computer places the literal string
‘LOAD_CLOSURE’ on top of the stack. The computer takes the top two values
from the stack and uses them as the qualified name and code of a new function,
which is placed on the stack. The computer takes the top value from the stack,
along with another value which it calls as a function, using the original value as
an argument, placing the return value on the stack. The computer takes the top
value from the stack, and stores it under the name LOAD_CLOSURE.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under LOAD_DEREF
on top of the stack. The computer places the literal string ‘LOAD_DEREF’ on
top of the stack. The computer takes the top two values from the stack and uses
them as the qualified name and code of a new function, which is placed on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack. The computer takes the top value from the stack, and
stores it under the name LOAD_DEREF.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under LOAD_FAST
on top of the stack. The computer places the literal string 'TLOAD_FAST’ on top
of the stack. The computer takes the top two values from the stack and uses
them as the qualified name and code of a new function, which is placed on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack. The computer takes the top value from the stack, and
stores it under the name LOAD_FAST.

The computer places the value associated with the name descriptor
on top of the stack. The computer places the code object described under
LOAD_GLOBAL on top of the stack. The computer places the literal string
‘LOAD_GLOBAL’ on top of the stack. The computer takes the top two values
from the stack and uses them as the qualified name and code of a new function,
which is placed on the stack. The computer takes the top value from the stack,
along with another value which it calls as a function, using the original value as
an argument, placing the return value on the stack. The computer takes the top
value from the stack, and stores it under the name LOAD_GLOBAL.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under POP_BLOCK
on top of the stack. The computer places the literal string ‘POP_BLOCK’ on top
of the stack. The computer takes the top two values from the stack and uses
them as the qualified name and code of a new function, which is placed on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack. The computer takes the top value from the stack, and
stores it under the name POP_BLOCK.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under SETUP_LOOP
on top of the stack. The computer places the literal string ‘'SETUP_LOOP’ on
top of the stack. The computer takes the top two values from the stack and uses
them as the qualified name and code of a new function, which is placed on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack. The computer takes the top value from the stack, and
stores it under the name SETUP_LOOP.



60 CHAPTER 4. BYTECODE

The computer places the value associated with the name descriptor
on top of the stack. The computer places the code object described under
STORE_DEREF on top of the stack. The computer places the literal string
‘STORE_DEREF’ on top of the stack. The computer takes the top two values
from the stack and uses them as the qualified name and code of a new function,
which is placed on the stack. The computer takes the top value from the stack,
along with another value which it calls as a function, using the original value as
an argument, placing the return value on the stack. The computer takes the top
value from the stack, and stores it under the name STORE_DEREF.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under STORE_FAST
on top of the stack. The computer places the literal string ‘STORE_FAST’ on top
of the stack. The computer takes the top two values from the stack and uses
them as the qualified name and code of a new function, which is placed on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack. The computer takes the top value from the stack, and
stores it under the name STORE_FAST.

The computer places the value associated with the name descriptor
on top of the stack. The computer places the code object described under
STORE_SUBSCR on top of the stack. The computer places the literal string
‘STORE_SUBSCR’ on top of the stack. The computer takes the top two values
from the stack and uses them as the qualified name and code of a new function,
which is placed on the stack. The computer takes the top value from the stack,
along with another value which it calls as a function, using the original value as
an argument, placing the return value on the stack. The computer takes the top
value from the stack, and stores it under the name STORE_SUBSCR.

The computer places the value associated with the name descriptor on
top of the stack. The computer places the code object described under UN-
PACK_SEQUENCE on top of the stack. The computer places the literal string
‘UNPACK_SEQUENCE’ on top of the stack. The computer takes the top two
values from the stack and uses them as the qualified name and code of a new
function, which is placed on the stack. The computer takes the top value from
the stack, along with another value which it calls as a function, using the original
value as an argument, placing the return value on the stack. The computer takes
the top value from the stack, and stores it under the name UNPACK_SEQUENCE.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under YIELD_VALUE
on top of the stack. The computer places the literal string “YIELD_VALUE’ on
top of the stack. The computer takes the top two values from the stack and uses
them as the qualified name and code of a new function, which is placed on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack. The computer takes the top value from the stack, and
stores it under the name YIELD_VALUE.

The computer places the value associated with the name descriptor
on top of the stack. The computer places the code object described under
CALL_FUNCTION_KW on top of the stack. The computer places the literal
string ‘'CALL_FUNCTION_KW’ on top of the stack. The computer takes the
top two values from the stack and uses them as the qualified name and code
of a new function, which is placed on the stack. The computer takes the top
value from the stack, along with another value which it calls as a function, using
the original value as an argument, placing the return value on the stack. The
computer takes the top value from the stack, and stores it under the name
CALL_FUNCTION_KW.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under DUP_TOP on
top of the stack. The computer places the literal string ‘DUP_TOP’ on top of the
stack. The computer takes the top two values from the stack and uses them as
the qualified name and code of a new function, which is placed on the stack. The



DESCRIBE.PY 61

computer takes the top value from the stack, along with another value which it
calls as a function, using the original value as an argument, placing the return
value on the stack. The computer takes the top value from the stack, and stores
it under the name DUP_TOP.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under ROT_TWO on
top of the stack. The computer places the literal string ‘ROT_TWO’ on top of the
stack. The computer takes the top two values from the stack and uses them as
the qualified name and code of a new function, which is placed on the stack. The
computer takes the top value from the stack, along with another value which it
calls as a function, using the original value as an argument, placing the return
value on the stack. The computer takes the top value from the stack, and stores
it under the name ROT_TWO.

The computer places the value associated with the name descriptor on top
of the stack. The computer places the code object described under ROT_THREE
on top of the stack. The computer places the literal string '/ROT_THREE’ on top
of the stack. The computer takes the top two values from the stack and uses
them as the qualified name and code of a new function, which is placed on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack. The computer takes the top value from the stack, and
stores it under the name ROT_THREE.

The computer places the value associated with the name descriptor
on top of the stack. The computer places the code object described under
UNARY_NEGATIVE on top of the stack. The computer places the literal string
‘UNARY_NEGATIVE’ on top of the stack. The computer takes the top two values
from the stack and uses them as the qualified name and code of a new function,
which is placed on the stack. The computer takes the top value from the stack,
along with another value which it calls as a function, using the original value as
an argument, placing the return value on the stack. The computer takes the top
value from the stack, and stores it under the name UNARY_NEGATIVE.

The computer places the value associated with the name descriptor
on top of the stack. The computer places the code object described under
JUMP_IF_FALSE_OR_POP on top of the stack. The computer places the literal
string JUMP_IF_FALSE_OR_POP’ on top of the stack. The computer takes
the top two values from the stack and uses them as the qualified name and
code of a new function, which is placed on the stack. The computer takes the
top value from the stack, along with another value which it calls as a function,
using the original value as an argument, placing the return value on the stack.
The computer takes the top value from the stack, and stores it under the name
JUMP_IF_FALSE_OR_POP.

The computer places the value associated with the name __name___ on top of
the stack. The computer places the literal string °__main__" on top of the stack.
The computer takes the top two values from the stack and compares them for
equality, placing the result on top of the stack. The computer takes the top value
from the stack, and if it is false-like (e.g. False, None or zero), jumps to offset
1214.

The computer places the value associated with the name sys on top of the
stack. The computer takes the top value from the stack and retrieves its attribute
named argv, placing it on the stack. The computer places the integer constant
one on top of the stack. The computer takes the top two values from the stack
and retrieves the value of the second item, subscripted by the value of the first
item. The computer takes the top value from the stack, and stores it under the
name outfile.

The computer places the value associated with thename __file_ on top of
the stack. The computer takes the top value from the stack, and stores it under
the name filename.

The computer places the value associated with the name len on top of the
stack. The computer places the value associated with the name sys on top of the
stack. The computer takes the top value from the stack and retrieves its attribute



62 CHAPTER 4. BYTECODE

named argv, placing it on the stack. The computer takes the top value from the
stack, along with another value which it calls as a function, using the original
value as an argument, placing the return value on the stack. The computer places
the integer constant two on top of the stack. The computer takes the top two
values from the stack and compares them using the operator >, placing the result
on top of the stack. The computer takes the top value from the stack, and if it is
false-like (e.g. False, None or zero), jumps to offset 1182.

The computer places the value associated with the name sys on top of the
stack. The computer takes the top value from the stack and retrieves its attribute
named argv, placing it on the stack. The computer places the integer constant
two on top of the stack. The computer takes the top two values from the stack
and retrieves the value of the second item, subscripted by the value of the first
item. The computer takes the top value from the stack, and stores it under the
name filename.

Offset 1182

The computer places the value associated with the name open on top of the
stack. The computer places the value associated with the name outfile on top
of the stack. The computer places the literal string ‘w’ on top of the stack. The
computer takes two values from the stack, along with another value which it
calls as a function, using the original values as arguments, placing the return
value on the stack. The computer takes the top value from the stack, and stores
it under the name f.

The computer places the value associated with the name £ on top of the stack.
The computer takes the top value from the stack and retrieves its attribute named
write, placing it on the stack. The computer places the value associated with
the name describe_file on top of the stack. The computer places the value
associated with the name filename on top of the stack. The computer takes the
top value from the stack, along with another value which it calls as a function,
using the original value as an argument, placing the return value on the stack.
The computer takes the top value from the stack, along with another value which
it calls as a function, using the original value as an argument, placing the return
value on the stack. The computer discards the top value from the stack.

The computer places the value associated with the name £ on top of the stack.
The computer takes the top value from the stack and retrieves its attribute named
close, placing it on the stack. The computer takes the top value from the stack
and calls it as a function (with no arguments), placing the return value on top of
the stack. The computer discards the top value from the stack.

Offset 1214

The computer places the constant None on top of the stack. The computer exits
the current function, returning the top value on the stack.

title_block

The computer places the literal string ‘% {\n% {\n’ on top of the stack. The
computer takes the top value from the stack and retrieves its attribute named
format, placing it on the stack. The computer loads a reference to the global
variable named tit1le and places it on top of the stack. The computer loads a
reference to the global variable named author and places it on top of the stack.
The computer takes two values from the stack, along with another value which
it calls as a function, using the original values as arguments, placing the return
value on the stack. The computer exits the current function, returning the top
value on the stack.



DESCRIBE_OP 63

describe_op

The computer loads a reference to the global variable named descriptors and
places it on top of the stack. The computer takes the top value from the stack and
retrieves its attribute named get, placing it on the stack. The computer loads a
reference to the local variable named op and places it on top of the stack. The
computer takes the top value from the stack and retrieves its attribute named
opname, placing it on the stack. The computer places the constant None on top
of the stack. The computer takes two values from the stack, along with another
value which it calls as a function, using the original values as arguments, placing
the return value on the stack. The computer takes the top value from the stack
and stores it in the local variable named f.

The computer loads a reference to the local variable named f and places it
on top of the stack. The computer takes the top value from the stack, and if it is
false-like (e.g. False, None or zero), jumps to offset 30.

The computer loads a reference to the local variable named f and places it
on top of the stack. The computer loads a reference to the local variable named
op and places it on top of the stack. The computer loads a reference to the local
variable named codes and places it on top of the stack. The computer takes
two values from the stack, along with another value which it calls as a function,
using the original values as arguments, placing the return value on the stack.
The computer takes the top value from the stack and stores it in the local variable
named s. The computer jumps forward to offset 34.

Offset 30

The computer places the literal string ” on top of the stack. The computer takes
the top value from the stack and stores it in the local variable named s.

Offset 34

The computer loads a reference to the local variable named op and places it on
top of the stack. The computer takes the top value from the stack and retrieves
its attribute named is_jump_target, placing it on the stack. The computer
takes the top value from the stack, and if it is false-like (e.g. False, None or zero),
jumps to offset 56.

The computer places the literal string “\n\n### Offset { \n\n" on top of the
stack. The computer takes the top value from the stack and retrieves its attribute
named format, placing it on the stack. The computer loads a reference to the
local variable named op and places it on top of the stack. The computer takes the
top value from the stack and retrieves its attribute named offset, placing it on
the stack. The computer takes the top value from the stack, along with another
value which it calls as a function, using the original value as an argument, placing
the return value on the stack. The computer loads a reference to the local variable
named s and places it on top of the stack. The computer takes the top two values
from the stack, adds them together, and places the result on top of the stack. The
computer takes the top value from the stack and stores it in the local variable
named s.

Offset 56

The computer loads a reference to the local variable named s and places it on
top of the stack. The computer exits the current function, returning the top value
on the stack.

describe_file

The computer loads a reference to the global variable named open and places it
on top of the stack. The computer loads a reference to the local variable named



64 CHAPTER 4. BYTECODE

filename and places it on top of the stack. The computer takes the top value
from the stack, along with another value which it calls as a function, using
the original value as an argument, placing the return value on the stack. The
computer takes the top value from the stack and retrieves its attribute named
read, placing it on the stack. The computer takes the top value from the stack
and calls it as a function (with no arguments), placing the return value on top of
the stack. The computer takes the top value from the stack and stores it in the
local variable named codetxt.

The computer loads a reference to the global variable named title_block
and places it on top of the stack. The computer takes the top value from the stack
and calls it as a function (with no arguments), placing the return value on top of
the stack. The computer takes the top value from the stack and stores it in the
local variable named txt.

The computer loads a reference to the local variable named txt and places it
on top of the stack. The computer places the literal string “# About this book\n\n’
on top of the stack. The computer takes the top value from the stack and (in
place)adds the second from top value from the stack to it, placing the result on
top of the stack. The computer takes the top value from the stack and stores it in
the local variable named txt.

The computer loads a reference to the local variable named t xt and places it
on top of the stack. The computer loads a reference to the global variable named
preface and places it on top of the stack. The computer takes the top value
from the stack and (in place)adds the second from top value from the stack to it,
placing the result on top of the stack. The computer takes the top value from the
stack and stores it in the local variable named txt.

The computer loads a reference to the local variable named t xt and places it
on top of the stack. The computer places the literal string “\n\n## License\n\n’
on top of the stack. The computer takes the top value from the stack and (in
place)adds the second from top value from the stack to it, placing the result on
top of the stack. The computer takes the top value from the stack and stores it in
the local variable named txt.

The computer loads a reference to the local variable named t xt and places it
on top of the stack. The computer loads a reference to the global variable named
open and places it on top of the stack. The computer places the literal string
‘LICENSE.md’ on top of the stack. The computer takes the top value from the
stack, along with another value which it calls as a function, using the original
value as an argument, placing the return value on the stack. The computer takes
the top value from the stack and retrieves its attribute named read, placing it
on the stack. The computer takes the top value from the stack and calls it as a
function (with no arguments), placing the return value on top of the stack. The
computer takes the top value from the stack and (in place)adds the second from
top value from the stack to it, placing the result on top of the stack. The computer
takes the top value from the stack and stores it in the local variable named txt.

The computer loads a reference to the local variable named t xt and places it
on top of the stack. The computer places the literal string “\n\n# Source code\n\n’
on top of the stack. The computer takes the top value from the stack and (in
place)adds the second from top value from the stack to it, placing the result on
top of the stack. The computer takes the top value from the stack and stores it in
the local variable named txt.

The computer loads a reference to the local variable named t xt and places
it on top of the stack. The computer places the literal string ““\n” on top of the
stack. The computer loads a reference to the local variable named codetxt and
places it on top of the stack. The computer takes the top two values from the
stack, adds them together, and places the result on top of the stack. The computer
places the literal string “\n”"“\n\n’ on top of the stack. The computer takes the
top two values from the stack, adds them together, and places the result on top
of the stack. The computer takes the top value from the stack and (in place)adds
the second from top value from the stack to it, placing the result on top of the
stack. The computer takes the top value from the stack and stores it in the local
variable named txt.



DESCRIBE_FILE 65

The computer loads a reference to the local variable named txt and places
it on top of the stack. The computer places the literal string ‘# Abstract syntax
tree\n\n’ on top of the stack. The computer takes the top value from the stack
and (in place)adds the second from top value from the stack to it, placing the
result on top of the stack. The computer takes the top value from the stack and
stores it in the local variable named txt.

The computer loads a reference to the local variable named txt and places
it on top of the stack. The computer loads a reference to the global variable
named describe_node and places it on top of the stack. The computer loads a
reference to the global variable named ast and places it on top of the stack. The
computer takes the top value from the stack and retrieves its attribute named
parse, placing it on the stack. The computer loads a reference to the local
variable named codetxt and places it on top of the stack. The computer takes
the top value from the stack, along with another value which it calls as a function,
using the original value as an argument, placing the return value on the stack.
The computer takes the top value from the stack, along with another value which
it calls as a function, using the original value as an argument, placing the return
value on the stack. The computer takes the top value from the stack and (in
place)adds the second from top value from the stack to it, placing the result on
top of the stack. The computer takes the top value from the stack and stores it in
the local variable named txt.

The computer loads a reference to the local variable named t xt and places it
on top of the stack. The computer places the literal string “\n\n# Bytecode\n\n’
on top of the stack. The computer takes the top value from the stack and (in
place)adds the second from top value from the stack to it, placing the result on
top of the stack. The computer takes the top value from the stack and stores it in
the local variable named txt.

The computer loads a reference to the local variable named filename and
places it on top of the stack. The computer loads a reference to the global
variable named compile and places it on top of the stack. The computer loads
a reference to the local variable named codetxt and places it on top of the
stack. The computer loads a reference to the local variable named filename
and places it on top of the stack. The computer places the literal string ‘exec” on
top of the stack. The computer places the integer constant one on top of the stack.
The computer places the tuple consisting of the literal string ‘optimize” on top
of the stack. The computer takes the top value from the stack and interprets it
as a tuple of keyword names. It then takes values from the top of the stack as
corresponding values, followed by positional arguments up to a total of 4 values
(both keyword and positional). Then it takes the next value from the top of the
stack and calls it as a function with these arguments, placing the return value on
top of the stack. The computer takes the top two values from the stack, creates
a tuple from them, and places it on top of the stack. The computer takes the
top value from the stack, puts it in a list, and places it on top of the stack. The
computer takes the top value from the stack and stores it in the local variable
named codes.

The computer places a new block for a loop on top of the block stack, extend-
ing until offset 246.

Offset 140

The computer loads a reference to the local variable named codes and places it
on top of the stack. The computer takes the top value from the stack, and if it is
false-like (e.g. False, None or zero), jumps to offset 244.

The computer loads a reference to the local variable named codes and places
it on top of the stack. The computer takes the top value from the stack and
retrieves its attribute named pop, placing it on the stack. The computer places
the integer constant zero on top of the stack. The computer takes the top value
from the stack, along with another value which it calls as a function, using
the original value as an argument, placing the return value on the stack. The
computer takes the top value from the stack, unpacks it into two values, then



66 CHAPTER 4. BYTECODE

places them each on top of the stack. The computer takes the top value from the
stack and stores it in the local variable named name. The computer takes the top
value from the stack and stores it in the local variable named code.

The computer loads a reference to the local variable named t xt and places
it on top of the stack. The computer places the literal string ## {}” on top of the
stack. The computer takes the top value from the stack and retrieves its attribute
named format, placing it on the stack. The computer loads a reference to the
local variable named name and places it on top of the stack. The computer takes
the top value from the stack, along with another value which it calls as a function,
using the original value as an argument, placing the return value on the stack.
The computer takes the top value from the stack and (in place)adds the second
from top value from the stack to it, placing the result on top of the stack. The
computer takes the top value from the stack and stores it in the local variable
named txt.

The computer places a new block for a loop on top of the block stack, extend-
ing until offset 234. The computer loads a reference to the global variable named
dis and places it on top of the stack. The computer takes the top value from
the stack and retrieves its attribute named get_instructions, placing it on
the stack. The computer loads a reference to the local variable named code and
places it on top of the stack. The computer takes the top value from the stack,
along with another value which it calls as a function, using the original value
as an argument, placing the return value on the stack. The computer takes the
top value from the stack, turns it into an iterator (using iter () ), and places the
result on top of the stack.

Offset 184

The computer looks at the top value on the stack and calls its next () method. If
it returns a value, it places it on top of the stack. If not, it removes the top value
from the stack and jumps to offset 232. The computer takes the top value from
the stack and stores it in the local variable named op.

The computer loads a reference to the global variable named describe_op
and places it on top of the stack. The computer loads a reference to the local
variable named op and places it on top of the stack. The computer loads a
reference to the local variable named codes and places it on top of the stack.
The computer takes two values from the stack, along with another value which
it calls as a function, using the original values as arguments, placing the return
value on the stack. The computer takes the top value from the stack and stores it
in the local variable named desc.

The computer loads a reference to the local variable named desc and places
it on top of the stack. The computer takes the top value from the stack, and if it is
true-like (e.g. True, non-empty or non-zero), jumps to offset 204. The computer
jumps to offset 184.

Offset 204

The computer loads a reference to the local variable named op and places it on
top of the stack. The computer takes the top value from the stack and retrieves its
attribute named starts_line, placing it on the stack. The computer takes the
top value from the stack, and if it is false-like (e.g. False, None or zero), jumps to
offset 218.

The computer loads a reference to the local variable named txt and places it
on top of the stack. The computer places the literal string ‘“\n\n’ on top of the
stack. The computer takes the top value from the stack and (in place)adds the
second from top value from the stack to it, placing the result on top of the stack.
The computer takes the top value from the stack and stores it in the local variable
named txt.



DESCRIBE_NUMBER 67

Offset 218

The computer loads a reference to the local variable named txt and places it
on top of the stack. The computer loads a reference to the local variable named
desc and places it on top of the stack. The computer places the literal string “
on top of the stack. The computer takes the top two values from the stack, adds
them together, and places the result on top of the stack. The computer takes the
top value from the stack and (in place)adds the second from top value from the
stack to it, placing the result on top of the stack. The computer takes the top
value from the stack and stores it in the local variable named t xt. The computer
jumps to offset 184.

Offset 232

The computer removes one block from the block stack.

Offset 234

The computer loads a reference to the local variable named t xt and places it on
top of the stack. The computer places the literal string “\n\n" on top of the stack.
The computer takes the top value from the stack and (in place)adds the second
from top value from the stack to it, placing the result on top of the stack. The
computer takes the top value from the stack and stores it in the local variable
named txt. The computer jumps to offset 140.

Offset 244

The computer removes one block from the block stack.

Offset 246

The computer loads a reference to the local variable named t xt and places it on
top of the stack. The computer exits the current function, returning the top value
on the stack.

describe_number

The computer places the literal string ‘zero” on top of the stack. The computer
places the literal string ‘one’ on top of the stack. The computer places the literal
string ‘two” on top of the stack. The computer places the literal string ‘three’ on
top of the stack. The computer places the literal string ‘four” on top of the stack.
The computer places the literal string ‘five” on top of the stack. The computer
places the literal string ‘six” on top of the stack. The computer places the literal
string ‘seven” on top of the stack. The computer places the literal string ‘eight’” on
top of the stack.

The computer places the literal string ‘nine” on top of the stack. The computer
places the literal string ‘ten” on top of the stack. The computer takes the top
minus zero values from the stack, puts them in a list, and places it on top of the
stack. The computer takes the top value from the stack and stores it in the local
variable named words.

The computer places the integer constant zero on top of the stack. The
computer loads a reference to the local variable named num and places it on top
of the stack. The computer duplicates the top value on the stack, placing the
new copy on top of the stack. The computer takes the top three values from the
stack, rotates them so that the top value is now on the bottom, and replaces them
on top of the stack. The computer takes the top two values from the stack and
compares them using the operator <=, placing the result on top of the stack. The
computer looks at the top value on the stack. If it is false-like (e.g. False, None
or zero), it jumps to offset {}. Otherwise it removes the top value from the stack.



68 CHAPTER 4. BYTECODE

The computer places the integer constant ten on top of the stack. The computer
takes the top two values from the stack and compares them using the operator
<=, placing the result on top of the stack. The computer jumps forward to offset

Offset 44

The computer takes the top two values from the stack, swaps them, and replaces
them on top of the stack. The computer discards the top value from the stack.

Offset 48

The computer takes the top value from the stack, and if it is false-like (e.g. False,
None or zero), jumps to offset 58.

The computer loads a reference to the local variable named words and places
it on top of the stack. The computer loads a reference to the local variable named
num and places it on top of the stack. The computer takes the top two values
from the stack and retrieves the value of the second item, subscripted by the
value of the first item. The computer exits the current function, returning the top
value on the stack.

Offset 58

The computer loads a reference to the local variable named num and places it on
top of the stack. The computer places the integer constant minus ten on top of
the stack. The computer takes the top two values from the stack and compares
them using the operator >=, placing the result on top of the stack. The computer
takes the top value from the stack, and if it is false-like (e.g. False, None or zero),
jumps to offset 80.

The computer places the literal string ‘minus’ on top of the stack. The com-
puter loads a reference to the local variable named words and places it on top
of the stack. The computer loads a reference to the local variable named num
and places it on top of the stack. The computer takes the top value from the
stack, negates it, and places the result on top of the stack. The computer takes
the top two values from the stack and retrieves the value of the second item,
subscripted by the value of the first item. The computer takes the top two values
from the stack, adds them together, and places the result on top of the stack. The
computer exits the current function, returning the top value on the stack.

Offset 80

The computer loads a reference to the global variable named st r and places it
on top of the stack. The computer loads a reference to the local variable named
num and places it on top of the stack. The computer takes the top value from the
stack, along with another value which it calls as a function, using the original
value as an argument, placing the return value on the stack. The computer exits
the current function, returning the top value on the stack.

as_list

The computer loads a reference to the global variable named 1ist and places it
on top of the stack. The computer loads a reference to the local variable named
items and places it on top of the stack. The computer takes the top value from
the stack, along with another value which it calls as a function, using the original
value as an argument, placing the return value on the stack. The computer takes
the top value from the stack and stores it in the local variable named items.
The computer loads a reference to the global variable named 1en and places
it on top of the stack. The computer loads a reference to the local variable named
items and places it on top of the stack. The computer takes the top value from



ESCAPE_STRING 69

the stack, along with another value which it calls as a function, using the original
value as an argument, placing the return value on the stack. The computer places
the integer constant one on top of the stack. The computer takes the top two
values from the stack and compares them for equality, placing the result on top
of the stack. The computer takes the top value from the stack, and if it is false-like
(e.g. False, None or zero), jumps to offset 28.

The computer loads a reference to the local variable named items and places
it on top of the stack. The computer places the integer constant zero on top of the
stack. The computer takes the top two values from the stack and retrieves the
value of the second item, subscripted by the value of the first item. The computer
exits the current function, returning the top value on the stack.

Offset 28

The computer places the literal string *,” on top of the stack. The computer takes
the top value from the stack and retrieves its attribute named join, placing it
on the stack. The computer loads a reference to the local variable named items
and places it on top of the stack. The computer places the constant None on
top of the stack. The computer places the integer constant minus one on top of
the stack. The computer takes the top two values from the stack, creates a slice
object from them, and places it on top of the stack. The computer takes the top
two values from the stack and retrieves the value of the second item, subscripted
by the value of the first item. The computer takes the top value from the stack,
along with another value which it calls as a function, using the original value
as an argument, placing the return value on the stack. The computer places the
literal string ‘, and” on top of the stack. The computer takes the top two values
from the stack, adds them together, and places the result on top of the stack. The
computer loads a reference to the local variable named items and places it on
top of the stack. The computer places the integer constant minus one on top of
the stack. The computer takes the top two values from the stack and retrieves the
value of the second item, subscripted by the value of the first item. The computer
takes the top two values from the stack, adds them together, and places the result
on top of the stack. The computer exits the current function, returning the top
value on the stack. The computer places the constant None on top of the stack.
The computer exits the current function, returning the top value on the stack.

escape_string

The computer loads a reference to the global variable named re and places it on
top of the stack. The computer takes the top value from the stack and retrieves
its attribute named sub, placing it on the stack. The computer places the literal
string “([_"\*\\#])" on top of the stack. The computer places the literal string
“\\\1" on top of the stack. The computer loads a reference to the local variable
named s and places it on top of the stack. The computer takes three values from
the stack, along with another value which it calls as a function, using the original
values as arguments, placing the return value on the stack. The computer takes
the top value from the stack and stores it in the local variable named s.

The computer loads a reference to the global variable named re and places it
on top of the stack. The computer takes the top value from the stack and retrieves
its attribute named sub, placing it on the stack. The computer places the literal
string “\n” on top of the stack. The computer places the literal string “\\\\n" on
top of the stack. The computer loads a reference to the local variable named s
and places it on top of the stack. The computer takes three values from the stack,
along with another value which it calls as a function, using the original values as
arguments, placing the return value on the stack. The computer takes the top
value from the stack and stores it in the local variable named s.

The computer loads a reference to the local variable named s and places it on
top of the stack. The computer exits the current function, returning the top value
on the stack.



70 CHAPTER 4. BYTECODE

describe_value

The computer loads a reference to the global variable named isinstance and
places it on top of the stack. The computer loads a reference to the local variable
named value and places it on top of the stack. The computer loads a reference to
the global variable named types and places it on top of the stack. The computer
takes the top value from the stack and retrieves its attribute named CodeType,
placing it on the stack. The computer takes two values from the stack, along with
another value which it calls as a function, using the original values as arguments,
placing the return value on the stack. The computer takes the top value from the
stack, and if it is false-like (e.g. False, None or zero), jumps to offset 80.

The computer loads a reference to the local variable named value and places
it on top of the stack. The computer takes the top value from the stack and
retrieves its attribute named co_name, placing it on the stack. The computer
takes the top value from the stack and stores it in the local variable named name.

The computer loads a reference to the local variable named name and places it
on top of the stack. The computer takes the top value from the stack and retrieves
its attribute named startswith, placing it on the stack. The computer places
the literal string ‘<” on top of the stack. The computer takes the top value from
the stack, along with another value which it calls as a function, using the original
value as an argument, placing the return value on the stack. The computer takes
the top value from the stack, and if it is false-like (e.g. False, None or zero), jumps
to offset 56.

The computer loads a reference to the local variable named value and places
it on top of the stack. The computer takes the top value from the stack and
retrieves its attribute named co_name, placing it on the stack. The computer
places the integer constant one on top of the stack. The computer places the
integer constant minus one on top of the stack. The computer takes the top two
values from the stack, creates a slice object from them, and places it on top of
the stack. The computer takes the top two values from the stack and retrieves
the value of the second item, subscripted by the value of the first item. The
computer places the literal string “: on top of the stack. The computer takes the
top two values from the stack, adds them together, and places the result on top
of the stack. The computer loads a reference to the global variable named str
and places it on top of the stack. The computer loads a reference to the local
variable named value and places it on top of the stack. The computer takes the
top value from the stack and retrieves its attribute named co_firstlineno,
placing it on the stack. The computer takes the top value from the stack, along
with another value which it calls as a function, using the original value as an
argument, placing the return value on the stack. The computer takes the top two
values from the stack, adds them together, and places the result on top of the
stack. The computer takes the top value from the stack and stores it in the local
variable named name.

Offset 56

The computer loads the contents of the free variable named codes and places
it on top of the stack. The computer takes the top value from the stack and
retrieves its attribute named append, placing it on the stack. The computer
loads a reference to the local variable named name and places it on top of the
stack. The computer loads a reference to the local variable named value and
places it on top of the stack. The computer takes the top two values from the
stack, creates a tuple from them, and places it on top of the stack. The computer
takes the top value from the stack, along with another value which it calls as a
function, using the original value as an argument, placing the return value on
the stack. The computer discards the top value from the stack.

The computer places the literal string ‘the code object described under {}” on top
of the stack. The computer takes the top value from the stack and retrieves its
attribute named format, placing it on the stack. The computer loads a reference
to the local variable named name and places it on top of the stack. The computer



DESCRIBE_VALUE 71

takes the top value from the stack, along with another value which it calls as a
function, using the original value as an argument, placing the return value on
the stack. The computer exits the current function, returning the top value on
the stack.

Offset 80

The computer loads a reference to the global variable named isinstance and
places it on top of the stack. The computer loads a reference to the local variable
named value and places it on top of the stack. The computer loads a reference
to the global variable named st r and places it on top of the stack. The computer
takes two values from the stack, along with another value which it calls as a
function, using the original values as arguments, placing the return value on
the stack. The computer takes the top value from the stack, and if it is false-like
(e.g. False, None or zero), jumps to offset 104.

The computer places the literal string ‘the literal string *'{}'*” on top of the stack.
The computer takes the top value from the stack and retrieves its attribute named
format, placing it on the stack. The computer loads a reference to the global
variable named escape_string and places it on top of the stack. The computer
loads a reference to the local variable named value and places it on top of the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack. The computer takes the top value from the stack, along
with another value which it calls as a function, using the original value as an
argument, placing the return value on the stack. The computer exits the current
function, returning the top value on the stack.

Offset 104

The computer loads a reference to the global variable named isinstance and
places it on top of the stack. The computer loads a reference to the local variable
named value and places it on top of the stack. The computer loads a reference
to the global variable named int and places it on top of the stack. The computer
takes two values from the stack, along with another value which it calls as a
function, using the original values as arguments, placing the return value on
the stack. The computer takes the top value from the stack, and if it is false-like
(e.g. False, None or zero), jumps to offset 128.

The computer places the literal string ‘the integer constant {}" on top of the
stack. The computer takes the top value from the stack and retrieves its attribute
named format, placing it on the stack. The computer loads a reference to the
global variable named describe_number and places it on top of the stack.
The computer loads a reference to the local variable named value and places
it on top of the stack. The computer takes the top value from the stack, along
with another value which it calls as a function, using the original value as an
argument, placing the return value on the stack. The computer takes the top
value from the stack, along with another value which it calls as a function, using
the original value as an argument, placing the return value on the stack. The
computer exits the current function, returning the top value on the stack.

Offset 128

The computer loads a reference to the local variable named value and places it
on top of the stack. The computer places the constant None on top of the stack.
The computer takes the top two values from the stack and compares them for
identity, placing the result on top of the stack. The computer takes the top value
from the stack, and if it is false-like (e.g. False, None or zero), jumps to offset 140.
The computer places the literal string ‘the constant None” on top of the stack.
The computer exits the current function, returning the top value on the stack.



72 CHAPTER 4. BYTECODE

Offset 140

The computer loads a reference to the global variable named isinstance and
places it on top of the stack. The computer loads a reference to the local variable
named value and places it on top of the stack. The computer loads a reference to
the global variable named tuple and places it on top of the stack. The computer
takes two values from the stack, along with another value which it calls as a
function, using the original values as arguments, placing the return value on
the stack. The computer takes the top value from the stack, and if it is false-like
(e.g. False, None or zero), jumps to offset 176.

The computer places the literal string ‘the tuple consisting of on top of the
stack. The computer loads a reference to the global variable named as_1list
and places it on top of the stack.

The computer loads a reference to the free variable named codes and places
it on top of the stack. The computer takes the top value from the stack, creates
a tuple from it, and places it on top of the stack. The computer places the code
object described under genexpr:117 on top of the stack. The computer places the
literal string ‘describe_value..” on top of the stack. The computer takes the top
two values from the stack and uses them as the qualified name and code of a
new function, which is placed on the stack. It also takes the next value as a tuple
of cells for free variables, creating a closure. The computer loads a reference to
the local variable named value and places it on top of the stack. The computer
takes the top value from the stack, turns it into an iterator (using iter () ), and
places the result on top of the stack. The computer takes the top value from the
stack, along with another value which it calls as a function, using the original
value as an argument, placing the return value on the stack. The computer takes
the top value from the stack, along with another value which it calls as a function,
using the original value as an argument, placing the return value on the stack.
The computer takes the top two values from the stack, adds them together, and
places the result on top of the stack. The computer exits the current function,
returning the top value on the stack.

Offset 176

The computer loads a reference to the global variable named print and places
it on top of the stack. The computer places the literal string ‘Uninterpretable
constant:” on top of the stack. The computer loads a reference to the local variable
named value and places it on top of the stack. The computer takes two values
from the stack, along with another value which it calls as a function, using
the original values as arguments, placing the return value on the stack. The
computer discards the top value from the stack.

The computer loads a reference to the global variable named repr and places
it on top of the stack. The computer loads a reference to the local variable named
value and places it on top of the stack. The computer takes the top value from
the stack, along with another value which it calls as a function, using the original
value as an argument, placing the return value on the stack. The computer exits
the current function, returning the top value on the stack.

describe_node

The computer loads a reference to the global variable named descriptors and
places it on top of the stack. The computer takes the top value from the stack and
retrieves its attribute named get, placing it on the stack. The computer loads a
reference to the local variable named node and places it on top of the stack. The
computer takes the top value from the stack and retrieves its attribute named
__class__, placing it on the stack. The computer takes the top value from the
stack and retrieves its attribute named __name__, placing it on the stack. The
computer places the constant None on top of the stack. The computer takes
two values from the stack, along with another value which it calls as a function,



DESCRIPTOR 73

using the original values as arguments, placing the return value on the stack.
The computer takes the top value from the stack and stores it in the local variable
named f.

The computer loads a reference to the local variable named f and places it
on top of the stack. The computer takes the top value from the stack, and if it is
false-like (e.g. False, None or zero), jumps to offset 28.

The computer loads a reference to the local variable named f and places it
on top of the stack. The computer loads a reference to the local variable named
node and places it on top of the stack. The computer takes the top value from
the stack, along with another value which it calls as a function, using the original
value as an argument, placing the return value on the stack. The computer exits
the current function, returning the top value on the stack.

Offset 28

The computer loads a reference to the global variable named print and places
it on top of the stack. The computer loads a reference to the local variable named
node and places it on top of the stack. The computer loads a reference to the
local variable named node and places it on top of the stack. The computer takes
the top value from the stack and retrieves its attribute named _fields, placing
it on the stack. The computer takes two values from the stack, along with another
value which it calls as a function, using the original values as arguments, placing
the return value on the stack. The computer discards the top value from the
stack.

The computer loads a reference to the global variable named st r and places
it on top of the stack. The computer loads a reference to the local variable named
node and places it on top of the stack. The computer takes the top value from
the stack, along with another value which it calls as a function, using the original
value as an argument, placing the return value on the stack. The computer exits
the current function, returning the top value on the stack. The computer places
the constant None on top of the stack. The computer exits the current function,
returning the top value on the stack.

descriptor

The computer loads a reference to the local variable named f and places it on
top of the stack. The computer loads a reference to the global variable named
descriptors and places it on top of the stack. The computer loads a reference
to the local variable named f and places it on top of the stack. The computer
takes the top value from the stack and retrieves its attribute named __name__,
placing it on the stack. The computer takes the top value from the stack, uses
it to index into the next-from-top value, and stores the value below that in that
location.

The computer loads a reference to the local variable named £ and places it on
top of the stack. The computer exits the current function, returning the top value
on the stack.

Module

The computer places the literal string ‘A module, containing the following code:\n\n’
on top of the stack. The computer places the literal string “\n\n" on top of the
stack. The computer takes the top value from the stack and retrieves its attribute
named join, placing it on the stack.

The computer places the code object described under genexpr:143 on top of
the stack. The computer places the literal string ‘Module..” on top of the stack. The
computer takes the top two values from the stack and uses them as the qualified
name and code of a new function, which is placed on the stack. The computer
loads a reference to the local variable named node and places it on top of the



74 CHAPTER 4. BYTECODE

stack. The computer takes the top value from the stack and retrieves its attribute
named body, placing it on the stack. The computer takes the top value from the
stack, turns it into an iterator (using iter () ), and places the result on top of the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack. The computer takes the top value from the stack, along
with another value which it calls as a function, using the original value as an
argument, placing the return value on the stack. The computer takes the top two
values from the stack, adds them together, and places the result on top of the
stack. The computer exits the current function, returning the top value on the
stack.

Import

The computer places the literal string ‘An import statement for a module named
‘{1'.” on top of the stack. The computer takes the top value from the stack and
retrieves its attribute named format, placing it on the stack.

The computer loads a reference to the local variable named node and places
it on top of the stack. The computer takes the top value from the stack and
retrieves its attribute named names, placing it on the stack. The computer places
the integer constant zero on top of the stack. The computer takes the top two
values from the stack and retrieves the value of the second item, subscripted
by the value of the first item. The computer takes the top value from the stack
and retrieves its attribute named name, placing it on the stack. The computer
takes the top value from the stack, along with another value which it calls as a
function, using the original value as an argument, placing the return value on
the stack. The computer exits the current function, returning the top value on
the stack.

Assign

The computer places the literal string ‘An assignment to {}, of the value of {}.” on
top of the stack. The computer takes the top value from the stack and retrieves
its attribute named format, placing it on the stack.

The computer loads a reference to the global variable named describe_node
and places it on top of the stack. The computer loads a reference to the local
variable named node and places it on top of the stack. The computer takes the
top value from the stack and retrieves its attribute named targets, placing it on
the stack. The computer places the integer constant zero on top of the stack. The
computer takes the top two values from the stack and retrieves the value of the
second item, subscripted by the value of the first item. The computer takes the
top value from the stack, along with another value which it calls as a function,
using the original value as an argument, placing the return value on the stack.
The computer loads a reference to the global variable named describe_node
and places it on top of the stack. The computer loads a reference to the local
variable named node and places it on top of the stack. The computer takes the
top value from the stack and retrieves its attribute named value, placing it on
the stack. The computer takes the top value from the stack, along with another
value which it calls as a function, using the original value as an argument,
placing the return value on the stack. The computer takes two values from the
stack, along with another value which it calls as a function, using the original
values as arguments, placing the return value on the stack. The computer takes
the top value from the stack and stores it in the local variable named s.

The computer loads a reference to the local variable named s and places it on
top of the stack. The computer exits the current function, returning the top value
on the stack.



AUGASSIGN 75

AugAssign

The computer places the literal string ‘A modifying assignment to {}, using {1, of the
value of {}.” on top of the stack. The computer takes the top value from the stack
and retrieves its attribute named format, placing it on the stack.

The computer loads a reference to the global variable named describe_node
and places it on top of the stack. The computer loads a reference to the local
variable named node and places it on top of the stack. The computer takes the
top value from the stack and retrieves its attribute named target, placing it on
the stack. The computer takes the top value from the stack, along with another
value which it calls as a function, using the original value as an argument,
placing the return value on the stack.

The computer loads a reference to the global variable named describe_node
and places it on top of the stack. The computer loads a reference to the local
variable named node and places it on top of the stack. The computer takes the
top value from the stack and retrieves its attribute named op, placing it on the
stack. The computer takes the top value from the stack, along with another
value which it calls as a function, using the original value as an argument,
placing the return value on the stack. The computer loads a reference to the
global variable named describe_node and places it on top of the stack. The
computer loads a reference to the local variable named node and places it on
top of the stack. The computer takes the top value from the stack and retrieves
its attribute named value, placing it on the stack. The computer takes the top
value from the stack, along with another value which it calls as a function, using
the original value as an argument, placing the return value on the stack. The
computer takes three values from the stack, along with another value which it
calls as a function, using the original values as arguments, placing the return
value on the stack. The computer takes the top value from the stack and stores it
in the local variable named s.

The computer loads a reference to the local variable named s and places it on
top of the stack. The computer exits the current function, returning the top value
on the stack.

Add

The computer places the literal string ‘the addition (or concatenation) operator’ on
top of the stack. The computer exits the current function, returning the top value
on the stack.

Mult

The computer places the literal string ‘the multiplication operator’ on top of the
stack. The computer exits the current function, returning the top value on the
stack.

BitAnd

The computer places the literal string ‘the bitwise "AND’ operator” on top of the

stack. The computer exits the current function, returning the top value on the
stack.

Subscript
The computer places the literal string ‘{}, subscripted by {}" on top of the stack. The

computer takes the top value from the stack and retrieves its attribute named
format, placing it on the stack.



76 CHAPTER 4. BYTECODE

The computer loads a reference to the global variable named describe_node
and places it on top of the stack. The computer loads a reference to the local
variable named node and places it on top of the stack. The computer takes the
top value from the stack and retrieves its attribute named value, placing it on
the stack. The computer takes the top value from the stack, along with another
value which it calls as a function, using the original value as an argument,
placing the return value on the stack. The computer loads a reference to the
global variable named describe_node and places it on top of the stack. The
computer loads a reference to the local variable named node and places it on
top of the stack. The computer takes the top value from the stack and retrieves
its attribute named s1ice, placing it on the stack. The computer takes the top
value from the stack, along with another value which it calls as a function, using
the original value as an argument, placing the return value on the stack. The
computer takes two values from the stack, along with another value which it
calls as a function, using the original values as arguments, placing the return
value on the stack. The computer exits the current function, returning the top
value on the stack.

Index

The computer loads a reference to the global variable named describe_node
and places it on top of the stack. The computer loads a reference to the local
variable named node and places it on top of the stack. The computer takes the
top value from the stack and retrieves its attribute named value, placing it on
the stack. The computer takes the top value from the stack, along with another
value which it calls as a function, using the original value as an argument, placing
the return value on the stack. The computer exits the current function, returning
the top value on the stack.

Slice

The computer loads a reference to the local variable named node and places it on
top of the stack. The computer takes the top value from the stack and retrieves
its attribute named lower, placing it on the stack. The computer takes the top
value from the stack, and if it is false-like (e.g. False, None or zero), jumps to
offset 30.

The computer places the literal string ‘a slice from {} to {}" on top of the stack.
The computer takes the top value from the stack and retrieves its attribute named
format, placing it on the stack.

The computer loads a reference to the global variable named describe_node
and places it on top of the stack. The computer loads a reference to the local
variable named node and places it on top of the stack. The computer takes the
top value from the stack and retrieves its attribute named lower, placing it on
the stack. The computer takes the top value from the stack, along with another
value which it calls as a function, using the original value as an argument,
placing the return value on the stack. The computer loads a reference to the
global variable named describe_node and places it on top of the stack. The
computer loads a reference to the local variable named node and places it on
top of the stack. The computer takes the top value from the stack and retrieves
its attribute named upper, placing it on the stack. The computer takes the top
value from the stack, along with another value which it calls as a function, using
the original value as an argument, placing the return value on the stack. The
computer takes two values from the stack, along with another value which it
calls as a function, using the original values as arguments, placing the return
value on the stack. The computer exits the current function, returning the top
value on the stack.



FOR 77

Offset 30

The computer places the literal string ‘a slice up to {}" on top of the stack. The
computer takes the top value from the stack and retrieves its attribute named
format, placing it on the stack. The computer loads a reference to the global
variable named describe_node and places it on top of the stack. The computer
loads a reference to the local variable named node and places it on top of the
stack. The computer takes the top value from the stack and retrieves its attribute
named upper, placing it on the stack. The computer takes the top value from
the stack, along with another value which it calls as a function, using the original
value as an argument, placing the return value on the stack. The computer takes
the top value from the stack, along with another value which it calls as a function,
using the original value as an argument, placing the return value on the stack.
The computer exits the current function, returning the top value on the stack.
The computer places the constant None on top of the stack. The computer exits
the current function, returning the top value on the stack.

For

The computer places the literal string “A for loop, where {} iterates over {}.The body of
the loop is as follows:\n\n" on top of the stack. The computer takes the top value
from the stack and retrieves its attribute named format, placing it on the stack.

The computer loads a reference to the global variable named describe_node
and places it on top of the stack. The computer loads a reference to the local
variable named node and places it on top of the stack. The computer takes the
top value from the stack and retrieves its attribute named target, placing it on
the stack. The computer takes the top value from the stack, along with another
value which it calls as a function, using the original value as an argument,
placing the return value on the stack. The computer loads a reference to the
global variable named describe_node and places it on top of the stack. The
computer loads a reference to the local variable named node and places it on
top of the stack. The computer takes the top value from the stack and retrieves
its attribute named iter, placing it on the stack. The computer takes the top
value from the stack, along with another value which it calls as a function, using
the original value as an argument, placing the return value on the stack. The
computer takes two values from the stack, along with another value which it
calls as a function, using the original values as arguments, placing the return
value on the stack. The computer takes the top value from the stack and stores it
in the local variable named s.

The computer places a new block for a loop on top of the block stack, ex-
tending until offset 56. The computer loads a reference to the local variable
named node and places it on top of the stack. The computer takes the top value
from the stack and retrieves its attribute named body, placing it on the stack.
The computer takes the top value from the stack, turns it into an iterator (using
iter ()), and places the result on top of the stack.

Offset 32

The computer looks at the top value on the stack and calls its next () method. If
it returns a value, it places it on top of the stack. If not, it removes the top value
from the stack and jumps to offset 54. The computer takes the top value from the
stack and stores it in the local variable named nod.

The computer loads a reference to the local variable named s and places
it on top of the stack. The computer loads a reference to the global variable
named describe_node and places it on top of the stack. The computer loads a
reference to the local variable named nod and places it on top of the stack. The
computer takes the top value from the stack, along with another value which it
calls as a function, using the original value as an argument, placing the return
value on the stack. The computer places the literal string “\n\n’ on top of the



78 CHAPTER 4. BYTECODE

stack. The computer takes the top two values from the stack, adds them together,
and places the result on top of the stack. The computer takes the top value
from the stack and (in place)adds the second from top value from the stack to it,
placing the result on top of the stack. The computer takes the top value from the
stack and stores it in the local variable named s. The computer jumps to offset
32.

Offset 54

The computer removes one block from the block stack.

Offset 56

The computer loads a reference to the local variable named s and places it on top
of the stack. The computer places the literal string “The for loop ends here.” on top
of the stack. The computer takes the top value from the stack and (in place)adds
the second from top value from the stack to it, placing the result on top of the
stack. The computer takes the top value from the stack and stores it in the local
variable named s.

The computer loads a reference to the local variable named s and places it on
top of the stack. The computer exits the current function, returning the top value
on the stack.

While

The computer places the literal string ‘A while loop, testing {}.The body of the loop is
as follows:\n\n’ on top of the stack. The computer takes the top value from the
stack and retrieves its attribute named format, placing it on the stack.

The computer loads a reference to the global variable named describe_node
and places it on top of the stack. The computer loads a reference to the local
variable named node and places it on top of the stack. The computer takes the
top value from the stack and retrieves its attribute named test, placing it on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing
the return value on the stack. The computer takes the top value from the stack,
along with another value which it calls as a function, using the original value as
an argument, placing the return value on the stack. The computer takes the top
value from the stack and stores it in the local variable named s.

The computer places a new block for a loop on top of the block stack, ex-
tending until offset 48. The computer loads a reference to the local variable
named node and places it on top of the stack. The computer takes the top value
from the stack and retrieves its attribute named body, placing it on the stack.
The computer takes the top value from the stack, turns it into an iterator (using
iter ()), and places the result on top of the stack.

Offset 24

The computer looks at the top value on the stack and calls its next () method. If
it returns a value, it places it on top of the stack. If not, it removes the top value
from the stack and jumps to offset 46. The computer takes the top value from the
stack and stores it in the local variable named nod.

The computer loads a reference to the local variable named s and places
it on top of the stack. The computer loads a reference to the global variable
named describe_node and places it on top of the stack. The computer loads a
reference to the local variable named nod and places it on top of the stack. The
computer takes the top value from the stack, along with another value which it
calls as a function, using the original value as an argument, placing the return
value on the stack. The computer places the literal string “\n\n" on top of the
stack. The computer takes the top two values from the stack, adds them together,



CONTINUE 79

and places the result on top of the stack. The computer takes the top value
from the stack and (in place)adds the second from top value from the stack to it,
placing the result on top of the stack. The computer takes the top value from the
stack and stores it in the local variable named s. The computer jumps to offset
24.

Offset 46

The computer removes one block from the block stack.

Offset 48

The computer loads a reference to the local variable named s and places it on
top of the stack. The computer places the literal string “The while loop ends here.’
on top of the stack. The computer takes the top value from the stack and (in
place)adds the second from top value from the stack to it, placing the result on
top of the stack. The computer takes the top value from the stack and stores it in
the local variable named s.

The computer loads a reference to the local variable named s and places it on
top of the stack. The computer exits the current function, returning the top value
on the stack.

Continue

The computer places the literal string ‘A “continue’ statement.” on top of the stack.
The computer exits the current function, returning the top value on the stack.

Name

The computer places the literal string ‘the name ‘{}” on top of the stack. The
computer takes the top value from the stack and retrieves its attribute named
format, placing it on the stack. The computer loads a reference to the local
variable named node and places it on top of the stack. The computer takes the
top value from the stack and retrieves its attribute named id, placing it on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack. The computer exits the current function, returning the
top value on the stack.

NameConstant

The computer places the literal string ‘the constant ‘{}"" on top of the stack. The
computer takes the top value from the stack and retrieves its attribute named
format, placing it on the stack. The computer loads a reference to the local
variable named node and places it on top of the stack. The computer takes the
top value from the stack and retrieves its attribute named value, placing it on
the stack. The computer takes the top value from the stack, along with another
value which it calls as a function, using the original value as an argument, placing
the return value on the stack. The computer exits the current function, returning
the top value on the stack.

List

The computer loads a reference to the local variable named node and places it on
top of the stack. The computer takes the top value from the stack and retrieves its
attribute named elts, placing it on the stack. The computer takes the top value



80 CHAPTER 4. BYTECODE

from the stack, and if it is true-like (e.g. True, non-empty or non-zero), jumps to
offset 10.

The computer places the literal string ‘an empty list” on top of the stack. The
computer exits the current function, returning the top value on the stack.

Offset 10

The computer places the literal string ‘a list containing” on top of the stack. The
computer loads a reference to the global variable named as_1ist and places it
on top of the stack.

The computer places the code object described under genexpr:245 on top of
the stack. The computer places the literal string ‘List..” on top of the stack. The
computer takes the top two values from the stack and uses them as the qualified
name and code of a new function, which is placed on the stack. The computer
loads a reference to the local variable named node and places it on top of the
stack. The computer takes the top value from the stack and retrieves its attribute
named elts, placing it on the stack. The computer takes the top value from the
stack, turns it into an iterator (using iter () ), and places the result on top of the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack. The computer takes the top value from the stack, along
with another value which it calls as a function, using the original value as an
argument, placing the return value on the stack. The computer takes the top two
values from the stack, adds them together, and places the result on top of the
stack. The computer exits the current function, returning the top value on the
stack. The computer places the constant None on top of the stack. The computer
exits the current function, returning the top value on the stack.

Tuple

The computer loads a reference to the local variable named node and places it on
top of the stack. The computer takes the top value from the stack and retrieves its
attribute named elts, placing it on the stack. The computer takes the top value
from the stack, and if it is true-like (e.g. True, non-empty or non-zero), jumps to
offset 10.

The computer places the literal string ‘an empty tuple’ on top of the stack. The
computer exits the current function, returning the top value on the stack.

Offset 10

The computer places the literal string ‘a tuple containing” on top of the stack. The
computer loads a reference to the global variable named as_1ist and places it
on top of the stack.

The computer places the code object described under genexpr:254 on top of
the stack. The computer places the literal string “Tuple..” on top of the stack. The
computer takes the top two values from the stack and uses them as the qualified
name and code of a new function, which is placed on the stack. The computer
loads a reference to the local variable named node and places it on top of the
stack. The computer takes the top value from the stack and retrieves its attribute
named elts, placing it on the stack. The computer takes the top value from the
stack, turns it into an iterator (using iter () ), and places the result on top of the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack. The computer takes the top value from the stack, along
with another value which it calls as a function, using the original value as an
argument, placing the return value on the stack. The computer takes the top two
values from the stack, adds them together, and places the result on top of the
stack. The computer exits the current function, returning the top value on the



DICT 81

stack. The computer places the constant None on top of the stack. The computer
exits the current function, returning the top value on the stack.

Dict

The computer places the literal string ‘an empty dictionary” on top of the stack.
The computer exits the current function, returning the top value on the stack.

FunctionDef

The computer places the literal string “## {node.name}\n\nA definition of a function
named ‘{node.name}”” on top of the stack. The computer takes the top value from
the stack and retrieves its attribute named format, placing it on the stack.

The computer loads a reference to the local variable named node and places
it on top of the stack. The computer places the tuple consisting of the literal
string ‘node” on top of the stack. The computer takes the top value from the stack
and interprets it as a tuple of keyword names. It then takes values from the top
of the stack as corresponding values, followed by positional arguments up to
a total of 1 values (both keyword and positional). Then it takes the next value
from the top of the stack and calls it as a function with these arguments, placing
the return value on top of the stack. The computer takes the top value from the
stack and stores it in the local variable named s.

The computer loads a reference to the local variable named node and places
it on top of the stack. The computer takes the top value from the stack and
retrieves its attribute named args, placing it on the stack. The computer takes
the top value from the stack and stores it in the local variable named args.

The computer loads a reference to the global variable named len and places
it on top of the stack. The computer loads a reference to the local variable named
args and places it on top of the stack. The computer takes the top value from
the stack and retrieves its attribute named args, placing it on the stack. The
computer takes the top value from the stack, along with another value which it
calls as a function, using the original value as an argument, placing the return
value on the stack. The computer places the integer constant one on top of the
stack. The computer takes the top two values from the stack and compares them
for equality, placing the result on top of the stack. The computer takes the top
value from the stack, and if it is false-like (e.g. False, None or zero), jumps to
offset 56.

The computer loads a reference to the local variable named s and places
it on top of the stack. The computer places the literal string °, with argument
‘{1 on top of the stack. The computer takes the top value from the stack and
retrieves its attribute named format, placing it on the stack. The computer
loads a reference to the local variable named args and places it on top of the
stack. The computer takes the top value from the stack and retrieves its attribute
named args, placing it on the stack. The computer places the integer constant
zero on top of the stack. The computer takes the top two values from the stack
and retrieves the value of the second item, subscripted by the value of the first
item. The computer takes the top value from the stack and retrieves its attribute
named arg, placing it on the stack. The computer takes the top value from the
stack, along with another value which it calls as a function, using the original
value as an argument, placing the return value on the stack. The computer takes
the top value from the stack and (in place)adds the second from top value from
the stack to it, placing the result on top of the stack. The computer takes the top
value from the stack and stores it in the local variable named s. The computer
jumps forward to offset 94.



82 CHAPTER 4. BYTECODE

Offset 56

The computer loads a reference to the local variable named args and places it on
top of the stack. The computer takes the top value from the stack and retrieves
its attribute named args, placing it on the stack. The computer takes the top
value from the stack, and if it is false-like (e.g. False, None or zero), jumps to
offset 94.

The computer loads a reference to the local variable named s and places it on
top of the stack. The computer places the literal string *, with positional arguments
{args].” on top of the stack. The computer takes the top value from the stack
and retrieves its attribute named format, placing it on the stack. The computer
loads a reference to the global variable named as_1ist and places it on top of
the stack.

The computer places the code object described under listcomp:272 on top of
the stack. The computer places the literal string ‘FunctionDef..” on top of the
stack. The computer takes the top two values from the stack and uses them as
the qualified name and code of a new function, which is placed on the stack. The
computer loads a reference to the local variable named args and places it on
top of the stack. The computer takes the top value from the stack and retrieves
its attribute named args, placing it on the stack. The computer takes the top
value from the stack, turns it into an iterator (using iter ()), and places the
result on top of the stack. The computer takes the top value from the stack, along
with another value which it calls as a function, using the original value as an
argument, placing the return value on the stack. The computer takes the top
value from the stack, along with another value which it calls as a function, using
the original value as an argument, placing the return value on the stack. The
computer places the tuple consisting of the literal string ‘args” on top of the stack.
The computer takes the top value from the stack and interprets it as a tuple of
keyword names. It then takes values from the top of the stack as corresponding
values, followed by positional arguments up to a total of 1 values (both keyword
and positional). Then it takes the next value from the top of the stack and calls it
as a function with these arguments, placing the return value on top of the stack.
The computer takes the top value from the stack and (in place)adds the second
from top value from the stack to it, placing the result on top of the stack. The
computer takes the top value from the stack and stores it in the local variable
named s.

Offset 94

The computer loads a reference to the local variable named node and places it on
top of the stack. The computer takes the top value from the stack and retrieves
its attribute named decorator_list, placing it on the stack. The computer
takes the top value from the stack, and if it is false-like (e.g. False, None or zero),
jumps to offset 122.

The computer loads a reference to the local variable named s and places it on
top of the stack. The computer places the literal string “The definition is decorated
with the function ‘{}.” on top of the stack. The computer takes the top value from
the stack and retrieves its attribute named format, placing it on the stack.

The computer loads a reference to the local variable named node and places it
on top of the stack. The computer takes the top value from the stack and retrieves
its attribute named decorator_list, placing it on the stack. The computer
places the integer constant zero on top of the stack. The computer takes the top
two values from the stack and retrieves the value of the second item, subscripted
by the value of the first item. The computer takes the top value from the stack
and retrieves its attribute named id, placing it on the stack. The computer takes
the top value from the stack, along with another value which it calls as a function,
using the original value as an argument, placing the return value on the stack.
The computer takes the top value from the stack and (in place)adds the second
from top value from the stack to it, placing the result on top of the stack. The



FUNCTIONDEF 83

computer takes the top value from the stack and stores it in the local variable
named s.

Offset 122

The computer loads a reference to the local variable named s and places it on
top of the stack. The computer places the literal string “The body of the function is
as follows:\n\n’ on top of the stack. The computer takes the top value from the
stack and (in place)adds the second from top value from the stack to it, placing
the result on top of the stack. The computer takes the top value from the stack
and stores it in the local variable named s.

The computer places a new block for a loop on top of the block stack, ex-
tending until offset 162. The computer loads a reference to the local variable
named node and places it on top of the stack. The computer takes the top value
from the stack and retrieves its attribute named body, placing it on the stack.
The computer takes the top value from the stack, turns it into an iterator (using
iter ()), and places the result on top of the stack.

Offset 138

The computer looks at the top value on the stack and calls its next () method. If
it returns a value, it places it on top of the stack. If not, it removes the top value
from the stack and jumps to offset 160. The computer takes the top value from
the stack and stores it in the local variable named nod.

The computer loads a reference to the local variable named s and places
it on top of the stack. The computer loads a reference to the global variable
named describe_node and places it on top of the stack. The computer loads a
reference to the local variable named nod and places it on top of the stack. The
computer takes the top value from the stack, along with another value which it
calls as a function, using the original value as an argument, placing the return
value on the stack. The computer places the literal string “\n\n" on top of the
stack. The computer takes the top two values from the stack, adds them together,
and places the result on top of the stack. The computer takes the top value
from the stack and (in place)adds the second from top value from the stack to it,
placing the result on top of the stack. The computer takes the top value from the
stack and stores it in the local variable named s. The computer jumps to offset
138.

Offset 160

The computer removes one block from the block stack.

Offset 162

The computer loads a reference to the local variable named s and places it on
top of the stack. The computer places the literal string “The function {} ends
here.\n\n’ on top of the stack. The computer takes the top value from the stack
and retrieves its attribute named format, placing it on the stack. The computer
loads a reference to the local variable named node and places it on top of the
stack. The computer takes the top value from the stack and retrieves its attribute
named name, placing it on the stack. The computer takes the top value from the
stack, along with another value which it calls as a function, using the original
value as an argument, placing the return value on the stack. The computer takes
the top value from the stack and (in place)adds the second from top value from
the stack to it, placing the result on top of the stack. The computer takes the top
value from the stack and stores it in the local variable named s.

The computer loads a reference to the local variable named s and places it on
top of the stack. The computer exits the current function, returning the top value
on the stack.



84 CHAPTER 4. BYTECODE

Call

The computer places the literal string ‘a function call, calling the value of {f}' on top
of the stack. The computer takes the top value from the stack and retrieves its
attribute named format, placing it on the stack.

The computer loads a reference to the global variable named describe_node
and places it on top of the stack. The computer loads a reference to the local
variable named node and places it on top of the stack. The computer takes the
top value from the stack and retrieves its attribute named func, placing it on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack. The computer places the tuple consisting of the literal
string /" on top of the stack. The computer takes the top value from the stack
and interprets it as a tuple of keyword names. It then takes values from the top
of the stack as corresponding values, followed by positional arguments up to a
total of 1 values (both keyword and positional). Then it takes the next value
from the top of the stack and calls it as a function with these arguments, placing
the return value on top of the stack. The computer takes the top value from the
stack and stores it in the local variable named s.

The computer loads a reference to the global variable named 1en and places
it on top of the stack. The computer loads a reference to the local variable named
node and places it on top of the stack. The computer takes the top value from
the stack and retrieves its attribute named args, placing it on the stack. The
computer takes the top value from the stack, along with another value which it
calls as a function, using the original value as an argument, placing the return
value on the stack. The computer places the integer constant one on top of the
stack. The computer takes the top two values from the stack and compares them
for equality, placing the result on top of the stack. The computer takes the top
value from the stack, and if it is false-like (e.g. False, None or zero), jumps to
offset 58.

The computer loads a reference to the local variable named s and places it on
top of the stack. The computer places the literal string *, with arqument {}" on top
of the stack. The computer takes the top value from the stack and retrieves its
attribute named format, placing it on the stack. The computer loads a reference
to the global variable named describe_node and places it on top of the stack.
The computer loads a reference to the local variable named node and places
it on top of the stack. The computer takes the top value from the stack and
retrieves its attribute named args, placing it on the stack. The computer places
the integer constant zero on top of the stack. The computer takes the top two
values from the stack and retrieves the value of the second item, subscripted
by the value of the first item. The computer takes the top value from the stack,
along with another value which it calls as a function, using the original value
as an argument, placing the return value on the stack. The computer takes the
top value from the stack, along with another value which it calls as a function,
using the original value as an argument, placing the return value on the stack.
The computer takes the top value from the stack and (in place)adds the second
from top value from the stack to it, placing the result on top of the stack. The
computer takes the top value from the stack and stores it in the local variable
named s. The computer jumps forward to offset 106.

Offset 58

The computer loads a reference to the local variable named node and places it on
top of the stack. The computer takes the top value from the stack and retrieves
its attribute named args, placing it on the stack. The computer takes the top
value from the stack, and if it is false-like (e.g. False, None or zero), jumps to
offset 98.

The computer loads a reference to the local variable named s and places it on
top of the stack. The computer places the literal string *, with positional arguments
{args}” on top of the stack. The computer takes the top value from the stack and



CALL 85

retrieves its attribute named format, placing it on the stack. The computer loads
a reference to the global variable named as_1ist and places it on top of the
stack.

The computer places the code object described under genexpr:292 on top of
the stack. The computer places the literal string ‘Call..” on top of the stack. The
computer takes the top two values from the stack and uses them as the qualified
name and code of a new function, which is placed on the stack. The computer
loads a reference to the local variable named node and places it on top of the
stack. The computer takes the top value from the stack and retrieves its attribute
named args, placing it on the stack. The computer takes the top value from the
stack, turns it into an iterator (using iter () ), and places the result on top of the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing
the return value on the stack. The computer takes the top value from the stack,
along with another value which it calls as a function, using the original value
as an argument, placing the return value on the stack. The computer places the
tuple consisting of the literal string ‘args” on top of the stack. The computer takes
the top value from the stack and interprets it as a tuple of keyword names. It
then takes values from the top of the stack as corresponding values, followed
by positional arguments up to a total of 1 values (both keyword and positional).
Then it takes the next value from the top of the stack and calls it as a function
with these arguments, placing the return value on top of the stack. The computer
takes the top value from the stack and (in place)adds the second from top value
from the stack to it, placing the result on top of the stack. The computer takes
the top value from the stack and stores it in the local variable named s. The
computer jumps forward to offset 106.

Offset 98

The computer loads a reference to the local variable named s and places it on top
of the stack. The computer places the literal string ‘with no positional arguments’
on top of the stack. The computer takes the top value from the stack and (in
place)adds the second from top value from the stack to it, placing the result on
top of the stack. The computer takes the top value from the stack and stores it in
the local variable named s.

Offset 106

The computer loads a reference to the local variable named node and places it on
top of the stack. The computer takes the top value from the stack and retrieves
its attribute named keywords, placing it on the stack. The computer takes the
top value from the stack, and if it is false-like (e.g. False, None or zero), jumps to
offset 184.

The computer loads a reference to the global variable named len and places
it on top of the stack. The computer loads a reference to the local variable named
node and places it on top of the stack. The computer takes the top value from
the stack and retrieves its attribute named keywords, placing it on the stack.
The computer takes the top value from the stack, along with another value which
it calls as a function, using the original value as an argument, placing the return
value on the stack. The computer places the integer constant one on top of the
stack. The computer takes the top two values from the stack and compares them
for equality, placing the result on top of the stack. The computer takes the top
value from the stack, and if it is false-like (e.g. False, None or zero), jumps to
offset 136.

The computer loads a reference to the local variable named s and places it on
top of the stack. The computer places the literal string *, and keyword argument’
on top of the stack. The computer takes the top value from the stack and (in
place)adds the second from top value from the stack to it, placing the result on
top of the stack. The computer takes the top value from the stack and stores it in
the local variable named s. The computer jumps forward to offset 144.



86 CHAPTER 4. BYTECODE

Offset 136

The computer loads a reference to the local variable named s and places it on
top of the stack. The computer places the literal string *, and keyword arguments’
on top of the stack. The computer takes the top value from the stack and (in
place)adds the second from top value from the stack to it, placing the result on
top of the stack. The computer takes the top value from the stack and stores it in
the local variable named s.

Offset 144

The computer places a new block for a loop on top of the block stack, extending
until offset 184. The computer loads a reference to the local variable named
node and places it on top of the stack. The computer takes the top value from
the stack and retrieves its attribute named keywords, placing it on the stack.
The computer takes the top value from the stack, turns it into an iterator (using
iter ()), and places the result on top of the stack.

Offset 152

The computer looks at the top value on the stack and calls its next () method. If
it returns a value, it places it on top of the stack. If not, it removes the top value
from the stack and jumps to offset 182. The computer takes the top value from
the stack and stores it in the local variable named kw.

The computer loads a reference to the local variable named s and places it on
top of the stack. The computer places the literal string *, assigning {} as ‘{}” on top
of the stack. The computer takes the top value from the stack and retrieves its
attribute named format, placing it on the stack.

The computer loads a reference to the global variable named describe_node
and places it on top of the stack. The computer loads a reference to the local
variable named kw and places it on top of the stack. The computer takes the top
value from the stack and retrieves its attribute named value, placing it on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack. The computer loads a reference to the local variable
named kw and places it on top of the stack. The computer takes the top value
from the stack and retrieves its attribute named arg, placing it on the stack. The
computer takes two values from the stack, along with another value which it
calls as a function, using the original values as arguments, placing the return
value on the stack. The computer takes the top value from the stack and (in
place)adds the second from top value from the stack to it, placing the result on
top of the stack. The computer takes the top value from the stack and stores it in
the local variable named s. The computer jumps to offset 152.

Offset 182

The computer removes one block from the block stack.

Offset 184

The computer loads a reference to the local variable named s and places it on
top of the stack. The computer exits the current function, returning the top value
on the stack.

Return
The computer places the literal string ‘A return statement, returning the value of

{1.” on top of the stack. The computer takes the top value from the stack and
retrieves its attribute named format, placing it on the stack.



STR 87

The computer loads a reference to the global variable named describe_node
and places it on top of the stack. The computer loads a reference to the local
variable named node and places it on top of the stack. The computer takes the
top value from the stack and retrieves its attribute named value, placing it on
the stack. The computer takes the top value from the stack, along with another
value which it calls as a function, using the original value as an argument,
placing the return value on the stack. The computer takes the top value from the
stack, along with another value which it calls as a function, using the original
value as an argument, placing the return value on the stack. The computer exits
the current function, returning the top value on the stack.

Str

The computer places the literal string ‘the literal string *'{}**” on top of the stack.
The computer takes the top value from the stack and retrieves its attribute named
format, placing it on the stack. The computer loads a reference to the global
variable named escape_stringand places it on top of the stack. The computer
loads a reference to the local variable named node and places it on top of the
stack. The computer takes the top value from the stack and retrieves its attribute
named s, placing it on the stack. The computer takes the top value from the
stack, along with another value which it calls as a function, using the original
value as an argument, placing the return value on the stack. The computer takes
the top value from the stack, along with another value which it calls as a function,
using the original value as an argument, placing the return value on the stack.
The computer exits the current function, returning the top value on the stack.

Attribute

The computer places the literal string ‘an attribute lookup of ‘{}" on {}" on top of the
stack. The computer takes the top value from the stack and retrieves its attribute
named format, placing it on the stack.

The computer loads a reference to the local variable named node and places
it on top of the stack. The computer takes the top value from the stack and
retrieves its attribute named attr, placing it on the stack. The computer loads a
reference to the global variable named describe_node and places it on top of
the stack. The computer loads a reference to the local variable named node and
places it on top of the stack. The computer takes the top value from the stack
and retrieves its attribute named value, placing it on the stack. The computer
takes the top value from the stack, along with another value which it calls as a
function, using the original value as an argument, placing the return value on
the stack. The computer takes two values from the stack, along with another
value which it calls as a function, using the original values as arguments, placing
the return value on the stack. The computer exits the current function, returning
the top value on the stack.

Expr

The computer places the literal string ‘A bare expression with value {}.” on top of the
stack. The computer takes the top value from the stack and retrieves its attribute
named format, placing it on the stack. The computer loads a reference to the
global variable named describe_node and places it on top of the stack. The
computer loads a reference to the local variable named node and places it on
top of the stack. The computer takes the top value from the stack and retrieves
its attribute named value, placing it on the stack. The computer takes the top
value from the stack, along with another value which it calls as a function, using
the original value as an argument, placing the return value on the stack. The
computer takes the top value from the stack, along with another value which it
calls as a function, using the original value as an argument, placing the return



88 CHAPTER 4. BYTECODE

value on the stack. The computer exits the current function, returning the top
value on the stack.

BinOp

The computer places the literal string ‘{}, with left hand side {}, and right hand side
{1 on top of the stack. The computer takes the top value from the stack and
retrieves its attribute named format, placing it on the stack.

The computer loads a reference to the global variable named describe_node
and places it on top of the stack. The computer loads a reference to the local
variable named node and places it on top of the stack. The computer takes the
top value from the stack and retrieves its attribute named op, placing it on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack.

The computer loads a reference to the global variable named describe_node
and places it on top of the stack. The computer loads a reference to the local
variable named node and places it on top of the stack. The computer takes the
top value from the stack and retrieves its attribute named left, placing it on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack. The computer loads a reference to the global variable
named describe_node and places it on top of the stack. The computer loads a
reference to the local variable named node and places it on top of the stack. The
computer takes the top value from the stack and retrieves its attribute named
right, placing it on the stack. The computer takes the top value from the stack,
along with another value which it calls as a function, using the original value as
an argument, placing the return value on the stack. The computer takes three
values from the stack, along with another value which it calls as a function,
using the original values as arguments, placing the return value on the stack.
The computer exits the current function, returning the top value on the stack.

If

The computer places the literal string ‘An ‘if’ statement, testing {}. The body of the
main branch is as follows:\n\n" on top of the stack. The computer takes the top
value from the stack and retrieves its attribute named format, placing it on the
stack.

The computer loads a reference to the global variable named describe_node
and places it on top of the stack. The computer loads a reference to the local
variable named node and places it on top of the stack. The computer takes the
top value from the stack and retrieves its attribute named test, placing it on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing
the return value on the stack. The computer takes the top value from the stack,
along with another value which it calls as a function, using the original value as
an argument, placing the return value on the stack. The computer takes the top
value from the stack and stores it in the local variable named s.

The computer places a new block for a loop on top of the block stack, ex-
tending until offset 48. The computer loads a reference to the local variable
named node and places it on top of the stack. The computer takes the top value
from the stack and retrieves its attribute named body, placing it on the stack.
The computer takes the top value from the stack, turns it into an iterator (using
iter ()), and places the result on top of the stack.



IF 89

Offset 24

The computer looks at the top value on the stack and calls its next () method. If
it returns a value, it places it on top of the stack. If not, it removes the top value
from the stack and jumps to offset 46. The computer takes the top value from the
stack and stores it in the local variable named nod.

The computer loads a reference to the local variable named s and places
it on top of the stack. The computer loads a reference to the global variable
named describe_node and places it on top of the stack. The computer loads a
reference to the local variable named nod and places it on top of the stack. The
computer takes the top value from the stack, along with another value which it
calls as a function, using the original value as an argument, placing the return
value on the stack. The computer places the literal string “\n\n" on top of the
stack. The computer takes the top two values from the stack, adds them together,
and places the result on top of the stack. The computer takes the top value
from the stack and (in place)adds the second from top value from the stack to it,
placing the result on top of the stack. The computer takes the top value from the
stack and stores it in the local variable named s. The computer jumps to offset
24.

Offset 46

The computer removes one block from the block stack.

Offset 48

The computer loads a reference to the local variable named node and places it on
top of the stack. The computer takes the top value from the stack and retrieves
its attribute named orelse, placing it on the stack. The computer takes the top
value from the stack, and if it is false-like (e.g. False, None or zero), jumps to
offset 94.

The computer loads a reference to the local variable named s and places it on
top of the stack. The computer places the literal string “The other ("else’) branch of
the “if statement is as follows:\n\n" on top of the stack. The computer takes the top
value from the stack and (in place)adds the second from top value from the stack
to it, placing the result on top of the stack. The computer takes the top value
from the stack and stores it in the local variable named s.

The computer places a new block for a loop on top of the block stack, ex-
tending until offset 94. The computer loads a reference to the local variable
named node and places it on top of the stack. The computer takes the top value
from the stack and retrieves its attribute named orelse, placing it on the stack.
The computer takes the top value from the stack, turns it into an iterator (using
iter ()), and places the result on top of the stack.

Offset 70

The computer looks at the top value on the stack and calls its next () method. If
it returns a value, it places it on top of the stack. If not, it removes the top value
from the stack and jumps to offset 92. The computer takes the top value from the
stack and stores it in the local variable named nod.

The computer loads a reference to the local variable named s and places
it on top of the stack. The computer loads a reference to the global variable
named describe_node and places it on top of the stack. The computer loads a
reference to the local variable named nod and places it on top of the stack. The
computer takes the top value from the stack, along with another value which it
calls as a function, using the original value as an argument, placing the return
value on the stack. The computer places the literal string “\n\n" on top of the
stack. The computer takes the top two values from the stack, adds them together,
and places the result on top of the stack. The computer takes the top value
from the stack and (in place)adds the second from top value from the stack to it,



90 CHAPTER 4. BYTECODE

placing the result on top of the stack. The computer takes the top value from the
stack and stores it in the local variable named s. The computer jumps to offset
70.

Offset 92

The computer removes one block from the block stack.

Offset 94

The computer loads a reference to the local variable named s and places it on
top of the stack. The computer places the literal string ‘The “if’ statement ends
here\n\n’ on top of the stack. The computer takes the top value from the stack
and (in place)adds the second from top value from the stack to it, placing the
result on top of the stack. The computer takes the top value from the stack and
stores it in the local variable named s.

The computer loads a reference to the local variable named s and places it on
top of the stack. The computer exits the current function, returning the top value
on the stack.

Num

The computer places the literal string ‘a numeric constant with value {}" on top
of the stack. The computer takes the top value from the stack and retrieves its
attribute named format, placing it on the stack. The computer loads a reference
to the local variable named node and places it on top of the stack. The computer
takes the top value from the stack and retrieves its attribute named n, placing
it on the stack. The computer takes the top value from the stack, along with
another value which it calls as a function, using the original value as an argument,
placing the return value on the stack. The computer exits the current function,
returning the top value on the stack.

Compare

The computer loads a reference to the global variable named len and places it
on top of the stack. The computer loads a reference to the local variable named
node and places it on top of the stack. The computer takes the top value from the
stack and retrieves its attribute named ops, placing it on the stack. The computer
takes the top value from the stack, along with another value which it calls as
a function, using the original value as an argument, placing the return value
on the stack. The computer places the integer constant one on top of the stack.
The computer takes the top two values from the stack and compares them for
equality, placing the result on top of the stack. The computer takes the top value
from the stack, and if it is false-like (e.g. False, None or zero), jumps to offset 54.

The computer places the literal string ‘a comparison (using {}) of {} and {}" on
top of the stack. The computer takes the top value from the stack and retrieves
its attribute named format, placing it on the stack.

The computer loads a reference to the global variable named describe_node
and places it on top of the stack. The computer loads a reference to the local
variable named node and places it on top of the stack. The computer takes the
top value from the stack and retrieves its attribute named ops, placing it on the
stack. The computer places the integer constant zero on top of the stack. The
computer takes the top two values from the stack and retrieves the value of the
second item, subscripted by the value of the first item. The computer takes the
top value from the stack, along with another value which it calls as a function,
using the original value as an argument, placing the return value on the stack.

The computer loads a reference to the global variable named describe_node
and places it on top of the stack. The computer loads a reference to the local



COMPARE 91

variable named node and places it on top of the stack. The computer takes the
top value from the stack and retrieves its attribute named 1eft, placing it on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack. The computer loads a reference to the global variable
named describe_node and places it on top of the stack. The computer loads a
reference to the local variable named node and places it on top of the stack. The
computer takes the top value from the stack and retrieves its attribute named
comparators, placing it on the stack. The computer places the integer constant
zero on top of the stack. The computer takes the top two values from the stack
and retrieves the value of the second item, subscripted by the value of the first
item. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing
the return value on the stack. The computer takes three values from the stack,
along with another value which it calls as a function, using the original values as
arguments, placing the return value on the stack. The computer exits the current
function, returning the top value on the stack.

Offset 54

The computer loads a reference to the local variable named node and places it on
top of the stack. The computer takes the top value from the stack and retrieves its
attribute named left, placing it on the stack. The computer takes the top value
from the stack, puts it in a list, and places it on top of the stack. The computer
loads a reference to the local variable named node and places it on top of the
stack. The computer takes the top value from the stack and retrieves its attribute
named comparators, placing it on the stack. The computer places the constant
None on top of the stack. The computer places the integer constant minus one on
top of the stack. The computer takes the top two values from the stack, creates
a slice object from them, and places it on top of the stack. The computer takes
the top two values from the stack and retrieves the value of the second item,
subscripted by the value of the first item. The computer takes the top two values
from the stack, adds them together, and places the result on top of the stack. The
computer takes the top value from the stack and stores it in the local variable
named lefts.

The computer loads a reference to the local variable named node and places it
on top of the stack. The computer takes the top value from the stack and retrieves
its attribute named comparators, placing it on the stack. The computer takes
the top value from the stack and stores it in the local variable named rights.

The computer places the literal string ‘a compound comparison, comparing” on
top of the stack. The computer takes the top value from the stack and stores it in
the local variable named s.

The computer loads a reference to the local variable named s and places it on
top of the stack. The computer loads a reference to the global variable named
as_list and places it on top of the stack. The computer places the code object
described under genexpr:365 on top of the stack. The computer places the literal
string ‘Compare..” on top of the stack. The computer takes the top two values
from the stack and uses them as the qualified name and code of a new function,
which is placed on the stack.

The computer loads a reference to the global variable named zip and places
it on top of the stack. The computer loads a reference to the local variable named
lefts and places it on top of the stack. The computer loads a reference to the
local variable named node and places it on top of the stack. The computer takes
the top value from the stack and retrieves its attribute named ops, placing it on
the stack. The computer loads a reference to the local variable named rights
and places it on top of the stack. The computer takes three values from the stack,
along with another value which it calls as a function, using the original values
as arguments, placing the return value on the stack. The computer takes the
top value from the stack, turns it into an iterator (using iter ()), and places
the result on top of the stack. The computer takes the top value from the stack,



92 CHAPTER 4. BYTECODE

along with another value which it calls as a function, using the original value
as an argument, placing the return value on the stack. The computer takes the
top value from the stack, along with another value which it calls as a function,
using the original value as an argument, placing the return value on the stack.
The computer takes the top value from the stack and (in place)adds the second
from top value from the stack to it, placing the result on top of the stack. The
computer takes the top value from the stack and stores it in the local variable
named s.

The computer loads a reference to the local variable named s and places it on
top of the stack. The computer exits the current function, returning the top value
on the stack. The computer places the constant None on top of the stack. The
computer exits the current function, returning the top value on the stack.

Eq

The computer places the literal string ‘the equality operator’ on top of the stack.
The computer exits the current function, returning the top value on the stack.

GtE

The computer places the literal string ‘the ‘greater than or equal to” operator’ on top
of the stack. The computer exits the current function, returning the top value on
the stack.

LtE

The computer places the literal string ‘the "less than or equal to” operator” on top of
the stack. The computer exits the current function, returning the top value on
the stack.

Gt

The computer places the literal string ‘the 'greater than’ operator” on top of the
stack. The computer exits the current function, returning the top value on the
stack.

Is

The computer places the literal string ‘the identity operator” on top of the stack.
The computer exits the current function, returning the top value on the stack.

UnaryOp

The computer places the literal string ‘{} applied to {}" on top of the stack. The
computer takes the top value from the stack and retrieves its attribute named
format, placing it on the stack.

The computer loads a reference to the global variable named describe_node
and places it on top of the stack. The computer loads a reference to the local
variable named node and places it on top of the stack. The computer takes the
top value from the stack and retrieves its attribute named op, placing it on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack. The computer loads a reference to the global variable
named describe_node and places it on top of the stack. The computer loads a
reference to the local variable named node and places it on top of the stack. The
computer takes the top value from the stack and retrieves its attribute named



NOT 93

operand, placing it on the stack. The computer takes the top value from the
stack, along with another value which it calls as a function, using the original
value as an argument, placing the return value on the stack. The computer takes
two values from the stack, along with another value which it calls as a function,
using the original values as arguments, placing the return value on the stack.
The computer exits the current function, returning the top value on the stack.

Not

The computer places the literal string ‘the unary not’ operator” on top of the stack.
The computer exits the current function, returning the top value on the stack.

USub

The computer places the literal string ‘the unary negation operator’ on top of the
stack. The computer exits the current function, returning the top value on the
stack.

GeneratorExp

The computer loads a reference to the local variable named node and places it on
top of the stack. The computer takes the top value from the stack and retrieves
its attribute named generators, placing it on the stack. The computer places
the integer constant zero on top of the stack. The computer takes the top two
values from the stack and retrieves the value of the second item, subscripted by
the value of the first item. The computer takes the top value from the stack and
stores it in the local variable named gen.

The computer places the literal string ‘a generator expression, taking the value of
{1, as {} ranges over {}" on top of the stack. The computer takes the top value from
the stack and retrieves its attribute named format, placing it on the stack.

The computer loads a reference to the global variable named describe_node
and places it on top of the stack. The computer loads a reference to the local
variable named node and places it on top of the stack. The computer takes the
top value from the stack and retrieves its attribute named elt, placing it on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack.

The computer loads a reference to the global variable named describe_node
and places it on top of the stack. The computer loads a reference to the local
variable named gen and places it on top of the stack. The computer takes the top
value from the stack and retrieves its attribute named target, placing it on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack. The computer loads a reference to the global variable
named describe_node and places it on top of the stack. The computer loads a
reference to the local variable named gen and places it on top of the stack. The
computer takes the top value from the stack and retrieves its attribute named
iter, placing it on the stack. The computer takes the top value from the stack,
along with another value which it calls as a function, using the original value as
an argument, placing the return value on the stack. The computer takes three
values from the stack, along with another value which it calls as a function,
using the original values as arguments, placing the return value on the stack.
The computer exits the current function, returning the top value on the stack.



94 CHAPTER 4. BYTECODE

ListComp

The computer loads a reference to the local variable named node and places it on
top of the stack. The computer takes the top value from the stack and retrieves
its attribute named generators, placing it on the stack. The computer places
the integer constant zero on top of the stack. The computer takes the top two
values from the stack and retrieves the value of the second item, subscripted by
the value of the first item. The computer takes the top value from the stack and
stores it in the local variable named gen.

The computer places the literal string ‘a list comprehension, taking the value of {},
as {} ranges over {}" on top of the stack. The computer takes the top value from the
stack and retrieves its attribute named format, placing it on the stack.

The computer loads a reference to the global variable named describe_node
and places it on top of the stack. The computer loads a reference to the local
variable named node and places it on top of the stack. The computer takes the
top value from the stack and retrieves its attribute named e1t, placing it on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack.

The computer loads a reference to the global variable named describe_node
and places it on top of the stack. The computer loads a reference to the local
variable named gen and places it on top of the stack. The computer takes the top
value from the stack and retrieves its attribute named target, placing it on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing the
return value on the stack. The computer loads a reference to the global variable
named describe_node and places it on top of the stack. The computer loads a
reference to the local variable named gen and places it on top of the stack. The
computer takes the top value from the stack and retrieves its attribute named
iter, placing it on the stack. The computer takes the top value from the stack,
along with another value which it calls as a function, using the original value as
an argument, placing the return value on the stack. The computer takes three
values from the stack, along with another value which it calls as a function,
using the original values as arguments, placing the return value on the stack.
The computer exits the current function, returning the top value on the stack.

Assert

The computer places the literal string ” on top of the stack. The computer exits
the current function, returning the top value on the stack.

LOAD_CONST

The computer places the literal string ‘“The computer places {} on top of the stack.” on
top of the stack. The computer takes the top value from the stack and retrieves
its attribute named format, placing it on the stack.

The computer loads a reference to the global variable named describe_value
and places it on top of the stack. The computer loads a reference to the local
variable named op and places it on top of the stack. The computer takes the
top value from the stack and retrieves its attribute named argval, placing it on
the stack. The computer loads a reference to the local variable named codes
and places it on top of the stack. The computer takes two values from the stack,
along with another value which it calls as a function, using the original values as
arguments, placing the return value on the stack. The computer takes the top
value from the stack, along with another value which it calls as a function, using
the original value as an argument, placing the return value on the stack. The
computer exits the current function, returning the top value on the stack.



LOAD_NAME 95

LOAD_NAME

The computer places the literal string “The computer places the value associated with
the name ‘{}* on top of the stack.” on top of the stack. The computer takes the top
value from the stack and retrieves its attribute named format, placing it on the
stack.

The computer loads a reference to the local variable named op and places it
on top of the stack. The computer takes the top value from the stack and retrieves
its attribute named argval, placing it on the stack. The computer takes the top
value from the stack, along with another value which it calls as a function, using
the original value as an argument, placing the return value on the stack. The
computer exits the current function, returning the top value on the stack.

CALL_FUNCTION

The computer loads a reference to the local variable named op and places it on
top of the stack. The computer takes the top value from the stack and retrieves
its attribute named argval, placing it on the stack. The computer places the
integer constant zero on top of the stack. The computer takes the top two values
from the stack and compares them for equality, placing the result on top of the
stack. The computer takes the top value from the stack, and if it is false-like
(e.g. False, None or zero), jumps to offset 14.

The computer places the literal string “The computer takes the top value from the
stack and calls it as a function (with no arguments), placing the return value on top of
the stack.” on top of the stack. The computer exits the current function, returning
the top value on the stack.

Offset 14

The computer loads a reference to the local variable named op and places it on
top of the stack. The computer takes the top value from the stack and retrieves
its attribute named argval, placing it on the stack. The computer places the
integer constant one on top of the stack. The computer takes the top two values
from the stack and compares them for equality, placing the result on top of the
stack. The computer takes the top value from the stack, and if it is false-like
(e.g. False, None or zero), jumps to offset 36.

The computer places the literal string “The computer takes the top value from the
stack, along with another value which it calls as a function, using the original value as an
argument, placing the return value on the stack.” on top of the stack. The computer
takes the top value from the stack and retrieves its attribute named format,
placing it on the stack.

The computer loads a reference to the local variable named op and places it
on top of the stack. The computer takes the top value from the stack and retrieves
its attribute named argval, placing it on the stack. The computer takes the top
value from the stack, along with another value which it calls as a function, using
the original value as an argument, placing the return value on the stack. The
computer exits the current function, returning the top value on the stack.

Offset 36

The computer places the literal string “The computer takes {} values from the stack,
along with another value which it calls as a function, using the original values as
arguments, placing the return value on the stack.” on top of the stack. The computer
takes the top value from the stack and retrieves its attribute named format,
placing it on the stack.

The computer loads a reference to the global variable named describe_number
and places it on top of the stack. The computer loads a reference to the local
variable named op and places it on top of the stack. The computer takes the top
value from the stack and retrieves its attribute named argval, placing it on the



96 CHAPTER 4. BYTECODE

stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing
the return value on the stack. The computer takes the top value from the stack,
along with another value which it calls as a function, using the original value
as an argument, placing the return value on the stack. The computer exits the
current function, returning the top value on the stack. The computer places the
constant None on top of the stack. The computer exits the current function,
returning the top value on the stack.

POP_TOP

The computer places the literal string “The computer discards the top value from the
stack.” on top of the stack. The computer exits the current function, returning the
top value on the stack.

RETURN_VALUE

The computer places the literal string ‘The computer exits the current function,
returning the top value on the stack.” on top of the stack. The computer exits the
current function, returning the top value on the stack.

STORE_NAME

The computer places the literal string “The computer takes the top value from the
stack, and stores it under the name ‘{}.” on top of the stack. The computer takes the
top value from the stack and retrieves its attribute named format, placing it on
the stack.

The computer loads a reference to the local variable named op and places it
on top of the stack. The computer takes the top value from the stack and retrieves
its attribute named argval, placing it on the stack. The computer takes the top
value from the stack, along with another value which it calls as a function, using
the original value as an argument, placing the return value on the stack. The
computer exits the current function, returning the top value on the stack.

BINARY_SUBSCR

The computer places the literal string “The computer takes the top two values from
the stack and retrieves the value of the second item, subscripted by the value of the first
item.” on top of the stack. The computer exits the current function, returning the
top value on the stack.

LOAD_ATTR

The computer places the literal string “The computer takes the top value from the
stack and retrieves its attribute named ‘{}', placing it on the stack.” on top of the stack.
The computer takes the top value from the stack and retrieves its attribute named
format, placing it on the stack.

The computer loads a reference to the local variable named op and places it
on top of the stack. The computer takes the top value from the stack and retrieves
its attribute named argval, placing it on the stack. The computer takes the top
value from the stack, along with another value which it calls as a function, using
the original value as an argument, placing the return value on the stack. The
computer exits the current function, returning the top value on the stack.



POP_JUMP_IF_FALSE 97

POP_JUMP_IF_FALSE

The computer places the literal string “The computer takes the top value from the
stack, and if it is false-like (e.g. False, None or zero), jumps to offset {].” on top of the
stack. The computer takes the top value from the stack and retrieves its attribute
named format, placing it on the stack.

The computer loads a reference to the local variable named op and places it
on top of the stack. The computer takes the top value from the stack and retrieves
its attribute named argval, placing it on the stack. The computer takes the top
value from the stack, along with another value which it calls as a function, using
the original value as an argument, placing the return value on the stack. The
computer exits the current function, returning the top value on the stack.

POP_JUMP_IF_TRUE

The computer places the literal string “The computer takes the top value from the
stack, and if it is true-like (e.g. True, non-empty or non-zero), jumps to offset {}.” on top
of the stack. The computer takes the top value from the stack and retrieves its
attribute named format, placing it on the stack.

The computer loads a reference to the local variable named op and places it
on top of the stack. The computer takes the top value from the stack and retrieves
its attribute named argval, placing it on the stack. The computer takes the top
value from the stack, along with another value which it calls as a function, using
the original value as an argument, placing the return value on the stack. The
computer exits the current function, returning the top value on the stack.

IMPORT_NAME

The computer places the literal string “The computer takes the top two values from
the stack and uses them as the 'fromlist” and ‘level” of an import for the module ‘{}', which
is placed on the stack.” on top of the stack. The computer takes the top value from
the stack and retrieves its attribute named format, placing it on the stack.

The computer loads a reference to the local variable named op and places it
on top of the stack. The computer takes the top value from the stack and retrieves
its attribute named argval, placing it on the stack. The computer takes the top
value from the stack, along with another value which it calls as a function, using
the original value as an argument, placing the return value on the stack. The
computer exits the current function, returning the top value on the stack.

MAKE_FUNCTION

The computer places the literal string “The computer takes the top two values from
the stack and uses them as the qualified name and code of a new function, which is placed
on the stack.” on top of the stack. The computer takes the top value from the stack
and stores it in the local variable named txt.

The computer loads a reference to the local variable named op and places it
on top of the stack. The computer takes the top value from the stack and retrieves
its attribute named argval, placing it on the stack. The computer places the
integer constant eight on top of the stack. The computer takes the top two values
from the stack, applies a bitwise AND operator to them, and places the result on
top of the stack. The computer takes the top value from the stack, and if it is
false-like (e.g. False, None or zero), jumps to offset 22.

The computer loads a reference to the local variable named txt and places it
on top of the stack. The computer places the literal string ‘It also takes the next
value as a tuple of cells for free variables, creating a closure.” on top of the stack. The
computer takes the top value from the stack and (in place)adds the second from
top value from the stack to it, placing the result on top of the stack. The computer
takes the top value from the stack and stores it in the local variable named txt.



98 CHAPTER 4. BYTECODE

Offset 22

The computer loads a reference to the local variable named op and places it on
top of the stack. The computer takes the top value from the stack and retrieves
its attribute named argval, placing it on the stack. The computer places the
integer constant four on top of the stack. The computer takes the top two values
from the stack, applies a bitwise AND operator to them, and places the result on
top of the stack. The computer takes the top value from the stack, and if it is
false-like (e.g. False, None or zero), jumps to offset 40.

The computer loads a reference to the local variable named t xt and places it
on top of the stack. The computer places the literal string ‘It also takes the next
value as a dictionary of function annotations.” on top of the stack. The computer
takes the top value from the stack and (in place)adds the second from top value
from the stack to it, placing the result on top of the stack. The computer takes
the top value from the stack and stores it in the local variable named t xt.

Offset 40

The computer loads a reference to the local variable named op and places it on
top of the stack. The computer takes the top value from the stack and retrieves
its attribute named argval, placing it on the stack. The computer places the
integer constant two on top of the stack. The computer takes the top two values
from the stack, applies a bitwise AND operator to them, and places the result on
top of the stack. The computer takes the top value from the stack, and if it is
false-like (e.g. False, None or zero), jumps to offset 58.

The computer loads a reference to the local variable named t xt and places it
on top of the stack. The computer places the literal string ‘It also takes the next
value as a dictionary of keyword arguments.” on top of the stack. The computer takes
the top value from the stack and (in place)adds the second from top value from
the stack to it, placing the result on top of the stack. The computer takes the top
value from the stack and stores it in the local variable named t xt.

Offset 58

The computer loads a reference to the local variable named op and places it on
top of the stack. The computer takes the top value from the stack and retrieves
its attribute named argval, placing it on the stack. The computer places the
integer constant one on top of the stack. The computer takes the top two values
from the stack, applies a bitwise AND operator to them, and places the result on
top of the stack. The computer takes the top value from the stack, and if it is
false-like (e.g. False, None or zero), jumps to offset 76.

The computer loads a reference to the local variable named t xt and places it
on top of the stack. The computer places the literal string ‘It also takes the next
value as a tuple of default arguments.” on top of the stack. The computer takes the
top value from the stack and (in place)adds the second from top value from the
stack to it, placing the result on top of the stack. The computer takes the top
value from the stack and stores it in the local variable named t xt.

Offset 76

The computer loads a reference to the local variable named t xt and places it on
top of the stack. The computer exits the current function, returning the top value
on the stack.

COMPARE_OP

The computer loads a reference to the local variable named op and places it on
top of the stack. The computer takes the top value from the stack and retrieves
its attribute named argval, placing it on the stack. The computer places the



BUILD_MAP 99

literal string ‘=="on top of the stack. The computer takes the top two values from
the stack and compares them for equality, placing the result on top of the stack.
The computer takes the top value from the stack, and if it is false-like (e.g. False,
None or zero), jumps to offset 14.

The computer places the literal string “The computer takes the top two values
from the stack and compares them for equality, placing the result on top of the stack.” on
top of the stack. The computer exits the current function, returning the top value
on the stack.

Offset 14

The computer loads a reference to the local variable named op and places it on
top of the stack. The computer takes the top value from the stack and retrieves
its attribute named argval, placing it on the stack. The computer places the
literal string “is” on top of the stack. The computer takes the top two values from
the stack and compares them for equality, placing the result on top of the stack.
The computer takes the top value from the stack, and if it is false-like (e.g. False,
None or zero), jumps to offset 28.

The computer places the literal string “The computer takes the top two values
from the stack and compares them for identity, placing the result on top of the stack.” on
top of the stack. The computer exits the current function, returning the top value
on the stack.

Offset 28

The computer places the literal string “The computer takes the top two values from
the stack and compares them using the operator ‘{}, placing the result on top of the
stack.” on top of the stack. The computer takes the top value from the stack and
retrieves its attribute named format, placing it on the stack.

The computer loads a reference to the local variable named op and places it
on top of the stack. The computer takes the top value from the stack and retrieves
its attribute named argval, placing it on the stack. The computer takes the top
value from the stack, along with another value which it calls as a function, using
the original value as an argument, placing the return value on the stack. The
computer exits the current function, returning the top value on the stack.

BUILD_MAP

The computer loads a reference to the local variable named op and places it on
top of the stack. The computer takes the top value from the stack and retrieves
its attribute named argval, placing it on the stack. The computer places the
integer constant zero on top of the stack. The computer takes the top two values
from the stack and compares them for equality, placing the result on top of the
stack. The computer takes the top value from the stack, and if it is false-like
(e.g. False, None or zero), jumps to offset 14.

The computer places the literal string “The computer places an empty dictionary
on top of the stack.” on top of the stack. The computer exits the current function,
returning the top value on the stack.

Offset 14

The computer places the literal string “The computer takes the top {} values from the
stack, and uses them as key-value pairs in a new dictionary, which is placed on top of the
stack.” on top of the stack. The computer takes the top value from the stack and
retrieves its attribute named format, placing it on the stack.

The computer loads a reference to the global variable named describe_number
and places it on top of the stack. The computer places the integer constant two
on top of the stack. The computer loads a reference to the local variable named
op and places it on top of the stack. The computer takes the top value from the



100 CHAPTER 4. BYTECODE

stack and retrieves its attribute named argval, placing it on the stack. The
computer takes the top two values from the stack, multiplies them together, and
places the result on top of the stack. The computer takes the top value from the
stack, along with another value which it calls as a function, using the original
value as an argument, placing the return value on the stack. The computer
takes the top value from the stack, along with another value which it calls as a
function, using the original value as an argument, placing the return value on
the stack. The computer exits the current function, returning the top value on
the stack.

EXTENDED_ARG

The computer places the literal string ” on top of the stack. The computer exits
the current function, returning the top value on the stack.

BINARY_ADD

The computer places the literal string “The computer takes the top two values from
the stack, adds them together, and places the result on top of the stack.” on top of the
stack. The computer exits the current function, returning the top value on the
stack.

BINARY_MULTIPLY

The computer places the literal string “The computer takes the top two values from
the stack, multiplies them together, and places the result on top of the stack.” on top of
the stack. The computer exits the current function, returning the top value on
the stack.

BINARY_AND

The computer places the literal string “The computer takes the top two values from
the stack, applies a bitwise "AND’ operator to them, and places the result on top of the
stack.” on top of the stack. The computer exits the current function, returning the
top value on the stack.

BUILD_LIST

The computer loads a reference to the local variable named op and places it on
top of the stack. The computer takes the top value from the stack and retrieves
its attribute named argval, placing it on the stack. The computer places the
integer constant zero on top of the stack. The computer takes the top two values
from the stack and compares them for equality, placing the result on top of the
stack. The computer takes the top value from the stack, and if it is false-like
(e.g. False, None or zero), jumps to offset 14.

The computer places the literal string “The computer places a new empty list on
top of the stack.” on top of the stack. The computer exits the current function,
returning the top value on the stack.

Offset 14

The computer loads a reference to the local variable named op and places it on
top of the stack. The computer takes the top value from the stack and retrieves
its attribute named argval, placing it on the stack. The computer places the
integer constant one on top of the stack. The computer takes the top two values
from the stack and compares them for equality, placing the result on top of the



BUILD_SLICE 101

stack. The computer takes the top value from the stack, and if it is false-like
(e.g. False, None or zero), jumps to offset 28.

The computer places the literal string “The computer takes the top value from
the stack, puts it in a list, and places it on top of the stack.” on top of the stack. The
computer exits the current function, returning the top value on the stack.

Offset 28

The computer places the literal string “The computer takes the top {} values from the
stack, puts them in a list, and places it on top of the stack.” on top of the stack. The
computer takes the top value from the stack and retrieves its attribute named
format, placing it on the stack.

The computer loads a reference to the global variable named describe_number
and places it on top of the stack. The computer loads a reference to the local
variable named op and places it on top of the stack. The computer takes the top
value from the stack and retrieves its attribute named argval, placing it on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing
the return value on the stack. The computer takes the top value from the stack,
along with another value which it calls as a function, using the original value
as an argument, placing the return value on the stack. The computer exits the
current function, returning the top value on the stack. The computer places the
constant None on top of the stack. The computer exits the current function,
returning the top value on the stack.

BUILD_SLICE

The computer places the literal string “The computer takes the top two values from
the stack, creates a slice object from them, and places it on top of the stack.” on top of
the stack. The computer exits the current function, returning the top value on
the stack.

BUILD_TUPLE

The computer loads a reference to the local variable named op and places it on
top of the stack. The computer takes the top value from the stack and retrieves
its attribute named argval, placing it on the stack. The computer places the
integer constant one on top of the stack. The computer takes the top two values
from the stack and compares them for equality, placing the result on top of the
stack. The computer takes the top value from the stack, and if it is false-like
(e.g. False, None or zero), jumps to offset 14.

The computer places the literal string “The computer takes the top value from the
stack, creates a tuple from it, and places it on top of the stack.” on top of the stack. The
computer exits the current function, returning the top value on the stack.

Offset 14

The computer places the literal string “The computer takes the top {} values from
the stack, creates a tuple from them, and places it on top of the stack.” on top of the
stack. The computer takes the top value from the stack and retrieves its attribute
named format, placing it on the stack.

The computer loads a reference to the global variable named describe_number
and places it on top of the stack. The computer loads a reference to the local
variable named op and places it on top of the stack. The computer takes the top
value from the stack and retrieves its attribute named argval, placing it on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing
the return value on the stack. The computer takes the top value from the stack,



102 CHAPTER 4. BYTECODE

along with another value which it calls as a function, using the original value
as an argument, placing the return value on the stack. The computer exits the
current function, returning the top value on the stack.

FOR_ITER

The computer places the literal string “The computer looks at the top value on the
stack and calls its ‘next()’ method. If it returns a value, it places it on top of the stack.
If not, it removes the top value from the stack and jumps to offset {}.” on top of the
stack. The computer takes the top value from the stack and retrieves its attribute
named format, placing it on the stack.

The computer loads a reference to the local variable named op and places it
on top of the stack. The computer takes the top value from the stack and retrieves
its attribute named argval, placing it on the stack. The computer takes the top
value from the stack, along with another value which it calls as a function, using
the original value as an argument, placing the return value on the stack. The
computer exits the current function, returning the top value on the stack.

GET_ITER

The computer places the literal string “The computer takes the top value from the
stack, turns it into an iterator (using “iter()’), and places the result on top of the stack.”
on top of the stack. The computer exits the current function, returning the top
value on the stack.

INPLACE_ADD

The computer places the literal string “The computer takes the top value from the
stack and (in place)adds the second from top value from the stack to it, placing the result
on top of the stack.” on top of the stack. The computer exits the current function,
returning the top value on the stack.

JUMP_ABSOLUTE

The computer places the literal string “The computer jumps to offset {}.” on top
of the stack. The computer takes the top value from the stack and retrieves its
attribute named format, placing it on the stack. The computer loads a reference
to the local variable named op and places it on top of the stack. The computer
takes the top value from the stack and retrieves its attribute named argval,
placing it on the stack. The computer takes the top value from the stack, along
with another value which it calls as a function, using the original value as an
argument, placing the return value on the stack. The computer exits the current
function, returning the top value on the stack.

JUMP_FORWARD

The computer places the literal string “The computer jumps forward to offset {}.” on
top of the stack. The computer takes the top value from the stack and retrieves its
attribute named format, placing it on the stack. The computer loads a reference
to the local variable named op and places it on top of the stack. The computer
takes the top value from the stack and retrieves its attribute named argval,
placing it on the stack. The computer takes the top value from the stack, along
with another value which it calls as a function, using the original value as an
argument, placing the return value on the stack. The computer exits the current
function, returning the top value on the stack.



LIST _APPEND 103

LIST_APPEND

The computer places the literal string “The computer takes the top value from the
stack and appends it to the list stored {} places from the top of the stack.” on top of the
stack. The computer takes the top value from the stack and retrieves its attribute
named format, placing it on the stack.

The computer loads a reference to the global variable named describe_number
and places it on top of the stack. The computer loads a reference to the local
variable named op and places it on top of the stack. The computer takes the top
value from the stack and retrieves its attribute named argval, placing it on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing
the return value on the stack. The computer takes the top value from the stack,
along with another value which it calls as a function, using the original value
as an argument, placing the return value on the stack. The computer exits the
current function, returning the top value on the stack.

LOAD_CLOSURE

The computer places the literal string “The computer loads a reference to the free
variable named '{}" and places it on top of the stack.” on top of the stack. The computer
takes the top value from the stack and retrieves its attribute named format,
placing it on the stack.

The computer loads a reference to the local variable named op and places it
on top of the stack. The computer takes the top value from the stack and retrieves
its attribute named argval, placing it on the stack. The computer takes the top
value from the stack, along with another value which it calls as a function, using
the original value as an argument, placing the return value on the stack. The
computer exits the current function, returning the top value on the stack.

LOAD_DEREF

The computer places the literal string “The computer loads the contents of the free
variable named ‘{} and places it on top of the stack.” on top of the stack. The computer
takes the top value from the stack and retrieves its attribute named format,
placing it on the stack.

The computer loads a reference to the local variable named op and places it
on top of the stack. The computer takes the top value from the stack and retrieves
its attribute named argval, placing it on the stack. The computer takes the top
value from the stack, along with another value which it calls as a function, using
the original value as an argument, placing the return value on the stack. The
computer exits the current function, returning the top value on the stack.

LOAD_FAST

The computer places the literal string “The computer loads a reference to the local
variable named ‘{} and places it on top of the stack.” on top of the stack. The computer
takes the top value from the stack and retrieves its attribute named format,
placing it on the stack.

The computer loads a reference to the local variable named op and places it
on top of the stack. The computer takes the top value from the stack and retrieves
its attribute named argval, placing it on the stack. The computer takes the top
value from the stack, along with another value which it calls as a function, using
the original value as an argument, placing the return value on the stack. The
computer exits the current function, returning the top value on the stack.



104 CHAPTER 4. BYTECODE

LOAD_GLOBAL

The computer places the literal string “The computer loads a reference to the global
variable named {} and places it on top of the stack.” on top of the stack. The computer
takes the top value from the stack and retrieves its attribute named format,
placing it on the stack.

The computer loads a reference to the local variable named op and places it
on top of the stack. The computer takes the top value from the stack and retrieves
its attribute named argval, placing it on the stack. The computer takes the top
value from the stack, along with another value which it calls as a function, using
the original value as an argument, placing the return value on the stack. The
computer exits the current function, returning the top value on the stack.

POP_BLOCK

The computer places the literal string “The computer removes one block from the block
stack.” on top of the stack. The computer exits the current function, returning the
top value on the stack.

SETUP_LOOP

The computer places the literal string “The computer places a new block for a loop on
top of the block stack, extending until offset {}.” on top of the stack. The computer
takes the top value from the stack and retrieves its attribute named format,
placing it on the stack.

The computer loads a reference to the local variable named op and places it
on top of the stack. The computer takes the top value from the stack and retrieves
its attribute named argval, placing it on the stack. The computer takes the top
value from the stack, along with another value which it calls as a function, using
the original value as an argument, placing the return value on the stack. The
computer exits the current function, returning the top value on the stack.

STORE_DEREF

The computer places the literal string ‘The computer takes the top value from the
stack and stores it in the free variable named ‘{}'.” on top of the stack. The computer
takes the top value from the stack and retrieves its attribute named format,
placing it on the stack.

The computer loads a reference to the local variable named op and places it
on top of the stack. The computer takes the top value from the stack and retrieves
its attribute named argval, placing it on the stack. The computer takes the top
value from the stack, along with another value which it calls as a function, using
the original value as an argument, placing the return value on the stack. The
computer exits the current function, returning the top value on the stack.

STORE_FAST

The computer places the literal string “The computer takes the top value from the
stack and stores it in the local variable named ‘{}'.” on top of the stack. The computer
takes the top value from the stack and retrieves its attribute named format,
placing it on the stack.

The computer loads a reference to the local variable named op and places it
on top of the stack. The computer takes the top value from the stack and retrieves
its attribute named argval, placing it on the stack. The computer takes the top
value from the stack, along with another value which it calls as a function, using
the original value as an argument, placing the return value on the stack. The
computer exits the current function, returning the top value on the stack.



STORE_SUBSCR 105

STORE_SUBSCR

The computer places the literal string “The computer takes the top value from the
stack, uses it to index into the next-from-top value, and stores the value below that in that
location.” on top of the stack. The computer exits the current function, returning
the top value on the stack.

UNPACK_SEQUENCE

The computer places the literal string “The computer takes the top value from the
stack, unpacks it into {} values, then places them each on top of the stack.” on top of the
stack. The computer takes the top value from the stack and retrieves its attribute
named format, placing it on the stack.

The computer loads a reference to the global variable named describe_number
and places it on top of the stack. The computer loads a reference to the local
variable named op and places it on top of the stack. The computer takes the top
value from the stack and retrieves its attribute named argval, placing it on the
stack. The computer takes the top value from the stack, along with another value
which it calls as a function, using the original value as an argument, placing
the return value on the stack. The computer takes the top value from the stack,
along with another value which it calls as a function, using the original value
as an argument, placing the return value on the stack. The computer exits the
current function, returning the top value on the stack.

YIELD_VALUE

The computer places the literal string “The computer takes the top value from the
stack and yields it from the current generator.” on top of the stack. The computer
exits the current function, returning the top value on the stack.

CALL_FUNCTION_KW

The computer places the literal string “The computer takes the top value from the
stack and interprets it as a tuple of keyword names. It then takes values from the top of
the stack as corresponding values, followed by positional arguments up to a total of {}
values (both keyword and positional). Then it takes the next value from the top of the
stack and calls it as a function with these arquments, placing the return value on top of
the stack.” on top of the stack. The computer takes the top value from the stack
and retrieves its attribute named format, placing it on the stack.

The computer loads a reference to the local variable named op and places it
on top of the stack. The computer takes the top value from the stack and retrieves
its attribute named argval, placing it on the stack. The computer takes the top
value from the stack, along with another value which it calls as a function, using
the original value as an argument, placing the return value on the stack. The
computer exits the current function, returning the top value on the stack.

DUP_TOP

The computer places the literal string “The computer duplicates the top value on the
stack, placing the new copy on top of the stack.” on top of the stack. The computer
exits the current function, returning the top value on the stack.

ROT_TWO

The computer places the literal string “The computer takes the top two values from
the stack, swaps them, and replaces them on top of the stack.” on top of the stack. The
computer exits the current function, returning the top value on the stack.



106 CHAPTER 4. BYTECODE

ROT_THREE

The computer places the literal string “The computer takes the top three values from
the stack, rotates them so that the top value is now on the bottom, and replaces them
on top of the stack.” on top of the stack. The computer exits the current function,
returning the top value on the stack.

UNARY_NEGATIVE

The computer places the literal string “The computer takes the top value from the
stack, negates it, and places the result on top of the stack.” on top of the stack. The
computer exits the current function, returning the top value on the stack.

JUMP_IF_FALSE_OR_POP

The computer places the literal string “The computer looks at the top value on the
stack. If it is false-like (e.g. False, None or zero), it jumps to offset {}. Otherwise it
removes the top value from the stack.” on top of the stack. The computer exits the
current function, returning the top value on the stack.

genexpr:117

The computer loads a reference to the local variable named . 0 and places it on
top of the stack.

Offset 2

The computer looks at the top value on the stack and calls its next () method. If
it returns a value, it places it on top of the stack. If not, it removes the top value
from the stack and jumps to offset 20. The computer takes the top value from the
stack and stores it in the local variable named x. The computer loads a reference
to the global variable named describe_value and places it on top of the stack.
The computer loads a reference to the local variable named x and places it on top
of the stack. The computer loads the contents of the free variable named codes
and places it on top of the stack. The computer takes two values from the stack,
along with another value which it calls as a function, using the original values
as arguments, placing the return value on the stack. The computer takes the
top value from the stack and yields it from the current generator. The computer
discards the top value from the stack. The computer jumps to offset 2.

Offset 20

The computer places the constant None on top of the stack. The computer exits
the current function, returning the top value on the stack.

genexpr:143

The computer loads a reference to the local variable named . 0 and places it on
top of the stack.

Offset 2

The computer looks at the top value on the stack and calls its next () method.
If it returns a value, it places it on top of the stack. If not, it removes the top
value from the stack and jumps to offset 18. The computer takes the top value
from the stack and stores it in the local variable named n. The computer loads
a reference to the global variable named describe_node and places it on top



GENEXPR:245 107

of the stack. The computer loads a reference to the local variable named n and
places it on top of the stack. The computer takes the top value from the stack,
along with another value which it calls as a function, using the original value
as an argument, placing the return value on the stack. The computer takes the
top value from the stack and yields it from the current generator. The computer
discards the top value from the stack. The computer jumps to offset 2.

Offset 18

The computer places the constant None on top of the stack. The computer exits
the current function, returning the top value on the stack.

genexpr:245

The computer loads a reference to the local variable named . 0 and places it on
top of the stack.

Offset 2

The computer looks at the top value on the stack and calls its next () method. If
it returns a value, it places it on top of the stack. If not, it removes the top value
from the stack and jumps to offset 18. The computer takes the top value from
the stack and stores it in the local variable named elt. The computer loads a
reference to the global variable named describe_node and places it on top of
the stack. The computer loads a reference to the local variable named elt and
places it on top of the stack. The computer takes the top value from the stack,
along with another value which it calls as a function, using the original value
as an argument, placing the return value on the stack. The computer takes the
top value from the stack and yields it from the current generator. The computer
discards the top value from the stack. The computer jumps to offset 2.

Offset 18

The computer places the constant None on top of the stack. The computer exits
the current function, returning the top value on the stack.

genexpr:254

The computer loads a reference to the local variable named . 0 and places it on
top of the stack.

Offset 2

The computer looks at the top value on the stack and calls its next () method. If
it returns a value, it places it on top of the stack. If not, it removes the top value
from the stack and jumps to offset 18. The computer takes the top value from
the stack and stores it in the local variable named elt. The computer loads a
reference to the global variable named describe_node and places it on top of
the stack. The computer loads a reference to the local variable named elt and
places it on top of the stack. The computer takes the top value from the stack,
along with another value which it calls as a function, using the original value
as an argument, placing the return value on the stack. The computer takes the
top value from the stack and yields it from the current generator. The computer
discards the top value from the stack. The computer jumps to offset 2.

Offset 18

The computer places the constant None on top of the stack. The computer exits
the current function, returning the top value on the stack.



108 CHAPTER 4. BYTECODE

listcomp:272

The computer places a new empty list on top of the stack. The computer loads a
reference to the local variable named . 0 and places it on top of the stack.

Offset 4

The computer looks at the top value on the stack and calls its next () method. If
it returns a value, it places it on top of the stack. If not, it removes the top value
from the stack and jumps to offset 22. The computer takes the top value from the
stack and stores it in the local variable named a. The computer places the literal
string “{}”” on top of the stack. The computer takes the top value from the stack
and retrieves its attribute named format, placing it on the stack. The computer
loads a reference to the local variable named a and places it on top of the stack.
The computer takes the top value from the stack and retrieves its attribute named
arg, placing it on the stack. The computer takes the top value from the stack,
along with another value which it calls as a function, using the original value as
an argument, placing the return value on the stack. The computer takes the top
value from the stack and appends it to the list stored two places from the top of
the stack. The computer jumps to offset 4.

Offset 22

The computer exits the current function, returning the top value on the stack.

genexpr:292

The computer loads a reference to the local variable named . 0 and places it on
top of the stack.

Offset 2

The computer looks at the top value on the stack and calls its next () method.
If it returns a value, it places it on top of the stack. If not, it removes the top
value from the stack and jumps to offset 18. The computer takes the top value
from the stack and stores it in the local variable named a. The computer loads
a reference to the global variable named describe_node and places it on top
of the stack. The computer loads a reference to the local variable named a and
places it on top of the stack. The computer takes the top value from the stack,
along with another value which it calls as a function, using the original value
as an argument, placing the return value on the stack. The computer takes the
top value from the stack and yields it from the current generator. The computer
discards the top value from the stack. The computer jumps to offset 2.

Offset 18

The computer places the constant None on top of the stack. The computer exits
the current function, returning the top value on the stack.

genexpr:365

The computer loads a reference to the local variable named . 0 and places it on
top of the stack.

Offset 2

The computer looks at the top value on the stack and calls its next () method. If
it returns a value, it places it on top of the stack. If not, it removes the top value
from the stack and jumps to offset 42.



GENEXPR:365 109

The computer takes the top value from the stack, unpacks it into three values,
then places them each on top of the stack. The computer takes the top value from
the stack and stores it in the local variable named left. The computer takes
the top value from the stack and stores it in the local variable named op. The
computer takes the top value from the stack and stores it in the local variable
named right. The computer places the literal string ‘{} and {} using {}" on top
of the stack. The computer takes the top value from the stack and retrieves its
attribute named format, placing it on the stack. The computer loads a reference
to the global variable named describe_node and places it on top of the stack.
The computer loads a reference to the local variable named left and places
it on top of the stack. The computer takes the top value from the stack, along
with another value which it calls as a function, using the original value as an
argument, placing the return value on the stack. The computer loads a reference
to the global variable named describe_node and places it on top of the stack.
The computer loads a reference to the local variable named right and places
it on top of the stack. The computer takes the top value from the stack, along
with another value which it calls as a function, using the original value as an
argument, placing the return value on the stack. The computer loads a reference
to the global variable named describe_node and places it on top of the stack.
The computer loads a reference to the local variable named op and places it
on top of the stack. The computer takes the top value from the stack, along
with another value which it calls as a function, using the original value as an
argument, placing the return value on the stack. The computer takes three values
from the stack, along with another value which it calls as a function, using the
original values as arguments, placing the return value on the stack. The computer
takes the top value from the stack and yields it from the current generator. The
computer discards the top value from the stack. The computer jumps to offset 2.

Offset 42

The computer places the constant None on top of the stack. The computer exits
the current function, returning the top value on the stack.



	About this book
	License

	Source code
	Abstract syntax tree
	title_block
	describe_op
	describe_file
	describe_number
	as_list
	escape_string
	describe_value
	describe_node
	descriptor
	Module
	Import
	Assign
	AugAssign
	Add
	Mult
	BitAnd
	Subscript
	Index
	Slice
	For
	While
	Continue
	Name
	NameConstant
	List
	Tuple
	Dict
	FunctionDef
	Call
	Return
	Str
	Attribute
	Expr
	BinOp
	If
	Num
	Compare
	Eq
	GtE
	LtE
	Gt
	Is
	UnaryOp
	Not
	USub
	GeneratorExp
	ListComp
	Assert
	LOAD_CONST
	LOAD_NAME
	CALL_FUNCTION
	POP_TOP
	RETURN_VALUE
	STORE_NAME
	BINARY_SUBSCR
	LOAD_ATTR
	POP_JUMP_IF_FALSE
	POP_JUMP_IF_TRUE
	IMPORT_NAME
	MAKE_FUNCTION
	COMPARE_OP
	BUILD_MAP
	EXTENDED_ARG
	BINARY_ADD
	BINARY_MULTIPLY
	BINARY_AND
	BUILD_LIST
	BUILD_SLICE
	BUILD_TUPLE
	FOR_ITER
	GET_ITER
	INPLACE_ADD
	JUMP_ABSOLUTE
	JUMP_FORWARD
	LIST_APPEND
	LOAD_CLOSURE
	LOAD_DEREF
	LOAD_FAST
	LOAD_GLOBAL
	POP_BLOCK
	SETUP_LOOP
	STORE_DEREF
	STORE_FAST
	STORE_SUBSCR
	UNPACK_SEQUENCE
	YIELD_VALUE
	CALL_FUNCTION_KW
	DUP_TOP
	ROT_TWO
	ROT_THREE
	UNARY_NEGATIVE
	JUMP_IF_FALSE_OR_POP

	Bytecode
	describe.py
	title_block
	describe_op
	describe_file
	describe_number
	as_list
	escape_string
	describe_value
	describe_node
	descriptor
	Module
	Import
	Assign
	AugAssign
	Add
	Mult
	BitAnd
	Subscript
	Index
	Slice
	For
	While
	Continue
	Name
	NameConstant
	List
	Tuple
	Dict
	FunctionDef
	Call
	Return
	Str
	Attribute
	Expr
	BinOp
	If
	Num
	Compare
	Eq
	GtE
	LtE
	Gt
	Is
	UnaryOp
	Not
	USub
	GeneratorExp
	ListComp
	Assert
	LOAD_CONST
	LOAD_NAME
	CALL_FUNCTION
	POP_TOP
	RETURN_VALUE
	STORE_NAME
	BINARY_SUBSCR
	LOAD_ATTR
	POP_JUMP_IF_FALSE
	POP_JUMP_IF_TRUE
	IMPORT_NAME
	MAKE_FUNCTION
	COMPARE_OP
	BUILD_MAP
	EXTENDED_ARG
	BINARY_ADD
	BINARY_MULTIPLY
	BINARY_AND
	BUILD_LIST
	BUILD_SLICE
	BUILD_TUPLE
	FOR_ITER
	GET_ITER
	INPLACE_ADD
	JUMP_ABSOLUTE
	JUMP_FORWARD
	LIST_APPEND
	LOAD_CLOSURE
	LOAD_DEREF
	LOAD_FAST
	LOAD_GLOBAL
	POP_BLOCK
	SETUP_LOOP
	STORE_DEREF
	STORE_FAST
	STORE_SUBSCR
	UNPACK_SEQUENCE
	YIELD_VALUE
	CALL_FUNCTION_KW
	DUP_TOP
	ROT_TWO
	ROT_THREE
	UNARY_NEGATIVE
	JUMP_IF_FALSE_OR_POP
	genexpr:117
	genexpr:143
	genexpr:245
	genexpr:254
	listcomp:272
	genexpr:292
	genexpr:365


